
DEVELOPING A RAPID AND STABLE PARAMETRIC QUADRUPED

LOCOMOTION FOR AIBO ROBOTS

by

Tekin Meric.li

Submitted to the Faculty of Engineering

Department of Computer Engineering

Bachelor of Science

Undergraduate Program in Computer Engineering

Marmara University

Göztepe, 2005

DEVELOPING A RAPID AND STABLE PARAMETRIC QUADRUPED

LOCOMOTION FOR AIBO ROBOTS

APPROVED BY:

Assc. Prof. Haluk Topc.uoǧlu

(Thesis Supervisor)

Prof. H. Levent Akın

(Thesis Co-supervisor)

DATE OF APPROVAL: 10.06.2005

ii

ABSTRACT

DEVELOPING A RAPID AND STABLE PARAMETRIC

QUADRUPED LOCOMOTION FOR AIBO ROBOTS

For a robot, the ability to get from one place to another is one of the most basic

skills. However, locomotion on legged robots is a challenging multidimensional control

problem. It requires the specification and coordination of motions in all of the robot’s

legs while accounting for factors such as stability and surface friction. Especially when

the robot’s aim is to chase a ball, dribble it as fast as it can, and shoot it towards the

opponent goal, the importance of a rapid locomotion capability increases.

Robot soccer is a challenging research domain that is appropriate for studying

a large spectrum of issues of relevance to the development of complete autonomous

agents. A robot must have some capabilities in order to be able to play soccer. These

capabilities can be listed as vision, locomotion, localization, planning, and communi-

cation. Although all of these capabilities have vital roles in playing soccer, locomotion

is probably the most important one since a motionless soccer player cannot achieve its

goal even if it has great planning, vision, localization, and communication skills.

The aim of this work is to develop a fast and stable parametric locomotion for

Sony Aibo robots by using genetic algorithms for parameter optimization.

iii

ÖZET

AIBO ROBOTLARI İÇİN HIZLI VE KARARLI

PARAMETRİK DÖRT BACAKLI HAREKET MODÜLÜ

GELİŞTİRİLMESİ

Bir robot ic.in bir yerden başka bir yere gidebilme yetisi en temel becerilerden

biridir. Bununla birlikte, bacaklı robotlarda hareket oldukc.a uǧras.tırıcı c.ok boyutlu

bir kontrol problemidir. Bir yandan denge ve yüzeydeki sürtünme gibi faktörler hesaba

katılırken, bir yandan da robotun bütün bacaklarının hareketlerinin belirlenmesini ve

koordinasyonunun saǧlanmasını gerektirir. Özellikle robotun amacı bir topu kovala-

mak, onu olabildiǧince hızlı bir s.ekilde sürmek, ve rakip kaleye doǧru s.ut c.ekmek

olduǧunda hızlı hareket yetisinin önemi artar.

Tamamen özerk etmenlerin gelis.tirilmesine yönelik genis. bir alana yayılan konu-

lar üzerinde c.alıs.mak ic.in robot futbolu oldukc.a zorlayıcı bir aras.tırma alanıdır. Bir

robot futbol oynayabilmek ic.in bazı yetilere sahip olmalıdır. Bu yetiler görüs., hareket,

yerini belirleme, planlama, ve iletis.im olarak listelenebilir. Futbol oynamada bütün

bu yetilerin hayati rolleri olmasına raǧmen, c.ok iyi planlama, görüs., yerini belir-

leme, ve iletis.im yetilerine sahip olsa bile hareketsiz bir futbol oyuncusu amacına

ulas.amayacaǧından, muhtemelen hareket bu yetilerin en önemlisidir.

Bu c.alıs.manın amacı parametre optimizasyonu ic.in genetik algoritmaları kulla-

narak Sony Aibo robotları ic.in hızlı ve kararlı parametrik bir hareket modülü gelis.tir-

mektir.

iv

TABLE OF CONTENTS

ABSTRACT . iii

ÖZET . iv

LIST OF SYMBOLS/ABBREVIATIONS . vii

LIST OF FIGURES . viii

LIST OF TABLES . xi

ACKNOWLEDGEMENTS . xii

1. INTRODUCTION . 1

1.1. Outline . 2

2. BACKGROUND . 3

2.1. Robot Socccer . 3

2.2. Sony Aibo Robot . 5

3. GENETIC ALGORITHMS . 6

3.1. Operators . 7

3.1.1. Reproduction . 7

3.1.2. Crossover . 8

3.1.3. Mutation . 9

3.2. Fitness Function . 9

3.3. Initial Population . 10

3.4. Stopping Criteria . 10

3.5. Summary . 10

4. RELATED WORK . 12

4.1. Kinematic Model . 12

4.2. Parameters . 13

4.3. Locus . 14

4.4. Walking Styles . 14

4.5. Omnidirectional Motion . 17

5. PROPOSED APPROACH . 18

5.1. Kinematic Model . 18

5.1.1. Inverse Kinematics . 18

v

5.2. Walking . 20

5.2.1. Representing the Locus . 20

5.3. Object-oriented design of the locomotion module 21

5.4. Parameter Optimization . 23

6. EXPERIMENTAL STUDY . 28

6.1. Environments . 28

6.1.1. Webots . 28

6.2. Results . 29

7. CONCLUSION & FUTUREWORK . 32

APPENDIX A: Code Used in Parameter Optimization Process 33

REFERENCES . 36

vi

LIST OF SYMBOLS/ABBREVIATIONS

GA Genetic Algorithms

UNSW University of New South Wales

vii

LIST OF FIGURES

Figure 2.1. Field setup for RoboCup Legged League [1]. 4

Figure 2.2. ERS-210 and ERS-7. 5

Figure 3.1. A sample roulette wheel for a generation having 4 chromosomes. . 7

Figure 3.2. An example of crossover operation on two solution strings. 8

Figure 3.3. An example of a mutation operation on a solution string. 9

Figure 4.1. Kinematic model of an Aibo leg developed by rUNSWift [10]. . . . 13

Figure 4.2. Rectangular locus used by rUNSWift [10]. 15

Figure 4.3. The loci produced by minimization technique in the sagittal plane,

shown in bold. The dotted lines show the basic rectangular loci. . 15

Figure 4.4. Different timing of each legs motion results in different walking

styles [10]. 16

Figure 4.5. (a) High stance and (b) low stance. 16

Figure 4.6. Using legs as the wheels of a shopping cart [12]. 17

Figure 4.7. Forward, sideways, and turn components are added vectorally to

pbtain a resulting vector; which indicates the direction and limit

of the paw movement [11]. 17

Figure 5.1. Simple kinematic model representation for front right leg. 19

viii

Figure 5.2. Resulting motions with different combinations of forward, sideways,

and turnCW parameters: (a) anly forward, (b) only sideways, (c)

only turnCW, (d) forward and turnCW together [10]. 20

Figure 5.3. Movement of the paw on a (a) rectangular locus and a (b) half

elliptic locus. 21

Figure 5.4. Proposed locus in the shape of a hermite curve. 21

Figure 5.5. Class diagram showing the relations between classes used in the

locomotion module. 22

Figure 5.6. Parameters related to initial paw locations [10]. 24

Figure 5.7. String representation of walking parameters. 24

Figure 5.8. A sample string. 24

Figure 5.9. A sample chromosome seperated into three parts. These parts are

related to number of waypoints on the locus, shape of the front and

back loci, and initial paw locations, respectively. 26

Figure 5.10. Technique used for the crossover operation in our approach. 26

Figure 5.11. Pseudo-code implementation of the proposed approach. 27

Figure 6.1. A screenshot from Webots simulator environment showing an Aibo

ERS-210 on its walking test platform. 28

Figure 6.2. A screenshot from the simulator environment during the training

process. 29

ix

Figure 6.3. Average and best fitness values of 30 generations each having 50

individuals. 29

Figure 6.4. Average and best fitness values of 50 generations each having 100

individuals. 30

Figure 6.5. Resulting parameter set that provided best fitness value. 30

x

LIST OF TABLES

Table 4.1. Default values of the walking parameters used by ParaWalk [11]. . 14

Table 6.1. Walking engine vs. Performance. 31

xi

ACKNOWLEDGEMENTS

To my family...

Especially to my elder brother C. etin Meric. li for his guidance, support, and belief.

xii

1. INTRODUCTION

A robot is a mechanical device which performs automated tasks, either according

to direct human supervision, a pre-defined program, or a set of general guidelines, using

artificial intelligence techniques. The word “robot” was coined by Czech playwright

Karl Capek in his play R.U.R (Rossum’s Universal Robots), which opened in Prague

in 1921. The word is derived from ’robota’ which is the Czech word for forced labor.

Later, the word usually used for human-made artificial creatures that can accomplish

a task in which it is programmed to do.

Robots are designed for a multitude of applications. For example, in manufactur-

ing, they are used for welding, riveting, scraping and painting. They are also deployed

for demolition, fire and bomb fighting, nuclear site inspection, industrial cleaning, labo-

ratory use, medical surgery, agriculture, forestry, and planet exploration. Increasingly,

more artificial intelligence is being added. For example, some robots can identify ob-

jects in a pile, select the objects in the appropriate sequence and assemble them into

a unit. As the robots become smarter, the tasks that they can accomplish become

more complex. Today, some mobile robots are such smart that they can even play

soccer which is one of the most complex activities that a humanbeing performs. It

requires great vision, locomotion, localization, planning, and communication capabili-

ties; however, locomotion is probably the most important capability for a mobile robot

to achieve its goal as a soccer player.

The robots that have the ability to move is called mobile robots and there are

many ways for making a robot mobile, one of which is using legs. Currently one popular

research platform for legged locomotion is the Sony Aibo robot [Section 2.2] which is

used in the annual RoboCup [1] 4-legged soccer competitions. In robot soccer domain,

the speed of individual robots is a very important factor in determining the success

of a team. Since the default gait developed by Sony for Aibo is fairly slow, there has

been many research activities within the RoboCup community to develop improved

locomotion for the Aibo robots.

1

Until recently, using hand-tuned parameters for improving locomotion capability

of Aibo was a widely used technique. However, the process of hand-tuning a pa-

rameterized gait was time-consuming and required a good deal of human expertise.

Furthermore, it was necessary to tune new parameter sets when the robot’s hardware

and/or the surface on which it is to walk changes. One alternative to hand-tuning a

parameterized gait is to use machine learning techniques to automate the searching

process for obtaining the best parameters.

In this work, there are two main objectives. First objective is to develop an

inverse kinematics based, fully object-oriented, parametric motion engine for Aibo.

Additionally, this engine includes a higher-level representation of walking action that

deals with the trajectories of the Aibos four feet through three-dimensional space, which

are called the loci. The second objective is to determine the necessary parameters for

making an Aibo move smoothly, and obtaining the optimal values of these parameters

by using Genetic Algorithms (GA) [Chapter 3].

1.1. Outline

A brief information about robot soccer, RoboCup [Section 2.1], and Sony Aibo

robots [Section 2.2] is given as background in Chapter 2. Chapter 3 explains how

Genetic Algorithms work. In Chapter 4, research done on quadruped locomotion so

far is explained in detail. Chapter 5 explains our approach to the problem; how the

kinematic model of the robot is constructed, what are the parameters to be used by our

motion engine, and how these parameters are to be optimized by using GA techniques.

Experiment environments and results obtained after the experiments are mentioned

in Chapter 6. Finally, we conclude in Chapter 7 by summarizing the work done and

pointing the possible future work.

2

2. BACKGROUND

In this chapter, a brief information about robot soccer, RoboCup organization,

and specifications of a Sony Aibo robot is given.

2.1. Robot Socccer

Robot soccer is an example of such complex tasks for which multiple agents need

to collaborate in an adversarial environment to achieve specific objectives. The main

objective is scoring more goals than the opponent team and win the match as in real

soccer. In order to achieve this objective, we must have a team consisting of good

soccer players, and being a good soccer player requires some capabilities, such as,

vision, locomotion, localization, planning, and communication [2].

• Vision: This module is responsible for information extraction from received cam-

era frame. The vision process starts with receiving a camera frame and ends with

a world model consisting of a collection of visual percepts.

• Locomotion: This module is responsible for all kind of movements of the robot.

It includes all walking, dribbling, kicking actions and also some special actions

such as cheer and sadness indicators.

• Localization: This process can be summarized as searching for the answer of the

question ”Where am I?”.

• Planning: Planner is the decision making module of the robot and forms the

highest level in the hierarchy. Robot acts according to the behaviors decided by

the planner module.

• Communication: Communication module is responsible for inter-robot commu-

nication which uses messages that describe the states of each robot on the field.

RoboCup is an international joint project to promote AI, robotics, and related

fields. It is an attempt to foster AI and intelligent robotics research by providing a

standard problem where wide range of technologies can be integrated and examined.

3

RoboCup chose to use soccer game as a central topic of research, aiming at innovations

to be applied for socially significant problems and industries. The ultimate goal of the

RoboCup project is:

By 2050, develop a team of fully autonomous humanoid robots that can win

against the human world champion team in soccer.

In order for a robot team to actually perform a soccer game, various technologies

must be incorporated including: design principles of autonomous agents, multi-agent

collaboration, strategy acquisition, real-time reasoning, robotics, and sensor-fusion.

RoboCup is a task for a team of multiple fast-moving robots under a dynamic environ-

ment. RoboCup also offers a software platform for research on the software aspects of

RoboCup. One of the major application of RoboCup technologies is a search and res-

cue in large scale disaster. RoboCup initiated RoboCupRescue project to specifically

promote research in socially significant issues.

Currently, there exist a number of different RoboCup soccer leagues that focus

on different aspects of this challenge. The Sony Four-Legged Robot League is one of

them. In this league, teams consisting of four Sony Aibo robots each play on a field of

6 m x 4 m which is illustrated in Figure 2.1. The robots operate fully autonomously,

i.e. there is no external control, neither by humans nor by computers [1].

Figure 2.1. Field setup for RoboCup Legged League [1].

4

2.2. Sony Aibo Robot

The Sony Aibo ERS-210 is a commercially available robot that is equipped with

a color CMOS camera and an optional ethernet card that can be used for wireless

communication. The Aibo is a quadruped robot, and has three degrees of freedom in

each of its four legs. Totally it has 18 degrees of freedom with a continuous range of

motion and a variety of other output mechanisms including sound and LEDs. Also an

Aibo robot has various sensors such as an accelerometer, an infrared proximity sensor,

a total of 8 touch sensors (two on the head which measures pressure in micro Newton,

one on its chin, one on its back, and 4 under each paw), stereo microphones on the

sides of its head, and joint position and load sensing mechanism in addition to its

CMOS camera [3]. An ERS-210 has an 64bit RISC processor with a clock speed of 192

MHz, and an ERS-7 has an 64 bit RISC processor with a clock speed of 576 MHz. An

ERS-210 and an ERS-7 is shown in Figure 2.2

Figure 2.2. ERS-210 and ERS-7.

An operating system named Aperios, which is developed by Sony, runs on Aibo

robots. Aperios is organized as a set of cooperating processes, called objects in Aperios,

which communicate via message passing, and it provides system services.

”OPEN-R” is the interface that Sony is promoting for the entertainment robot

systems to expand the capabilities of entertainment robots. This interface is layered

and optimized to enable efficient development of hardware and software for robots. The

OPEN-R SDK discloses the specifications of the interface between the system layer and

the application layer. These specifications are essential knowledge for developing robot

software [4].

5

3. GENETIC ALGORITHMS

Genetic algorithms (GA) are a part of evolutionary computing, which is a rapidly

growing area of artificial intelligence. GA are inspired by Darwin’s theory of evolution;

simply said, problems are solved by an evolutionary process resulting in a best (fittest)

solution (survivor) - in other words, the solution is evolved. In every generation, a new

set of artificial creatures (strings) is created using bits and pieces of the fittest of the

old; an occasional new part is tried for good measure.They efficiently exploit historical

information to speculate on new search points with expected improved performance

[5].

GA works with strings which are called chromosomes and each chromosome rep-

resents an individual. Strings are constructed by arranging necessary parameters in a

row. Every individual has a property called fitness, which indicates the strength of

the individual, that is how strongly does it conform to the situation to be obtained, or

in other words, the goodness of solution. Typically a higher fitness value represents a

better solution.

A set of chromosomes is called a population. To form a new population (the

next generation), individuals are selected according to their fitness. The simplest se-

lection technique is the fitness-proportionate selection, where individuals are selected

with a probability proportional to their relative fitness. This ensures that the expected

number of times an individual is chosen is approximately proportional to its relative

performance in the population. Thus, high-fitness good individuals stand a better

chance of reproducing, while low-fitness ones are more likely to disappear. Producing

new generations by applying operators of GA to previous generation iteratively con-

tinues until either a certain convergence level of the system is reached (a solution / a

set of solutions with a fitness value over a certain threshold is produced) or a given

iteration number is exceeded [5].

Parameters of a solution of the system are represented as a string of numbers

6

in GA. The most common representation method is to use binary numbers. In this

approach, each parameter is one single bit. In real number / integer encoding, each

gene is consist of a real number / integer. Different methods might give different results

for different problems; hence, string representation method is problem dependent.

3.1. Operators

Reproduction, Crossover and Mutation are main three operators used in GA.

These operators are used for creating new generations and finding an optimal solution

by investigating each individual. The probabilities of these operators of being used

affect the characteristics of the output very much.

3.1.1. Reproduction

Reproduction is a process in which individual strings are copied into the next

generation according to their fitness function values. This process makes sure that the

strings with a higher fitness function value have a higher probability of contributing

one or more offspring in the next generation. This operator, of course, is an artificial

version of natural selection, a Darwinian survival of the fittest among string creatures

[5].

Probably the easiest way of implementing the reproduction operator is to create

a biased roulette wheel where each current string in the population has a roulette wheel

slot sized in proportion to its fitness. The wheel is ”spun” and the marble falls into one

of the slots. The wheel is spun to select each chromosome that is to mate. A sample

roulette wheel is illustrated in Figure 3.1.

Figure 3.1. A sample roulette wheel for a generation having 4 chromosomes.

7

3.1.2. Crossover

The offspring individuals get their genetic information from their parents. Some

parts of the genetic information of each parent are carried to their offspring after repro-

duction. It’s provided that the individuals in each offspring carry some characteristics

of their parents since new individuals are created by exchanging some parts of the

parent chromosomes. This means that some portion of the characteristics from each

parent is inherited to the child. This operation in the evolutionary process is called

crossover. Figure 3.2 gives an example crossover operation on two solution strings

consisting of integers.

Figure 3.2. An example of crossover operation on two solution strings.

Figure 3.2 shows a sample single point crossover operation. Two new individuals

are created by exchanging the parts of the chromosomes seperated by the crossover

point, and after that operation these new individuals carry the genetic information

taken from both of the parents.

Crossover probability can be introduced to indicate how often crossover operation

will be performed. If crossover probability is 100 per cent, then all offspring is made

by crossover. If it is 0 per cent, whole new generation is made from exact copies of

chromosomes from old population.

8

3.1.3. Mutation

Mutation is a genetic operator that alters one ore more gene values in a chromo-

some from its initial state. This can result in entirely new gene values being added to

the gene pool. With these new gene values, the GA may be able to arrive at better

solution than was previously possible. Mutation is an important part of the genetic

search as it helps to prevent the population from getting stuck at any local optima.

Mutation occurs during evolution according to a user-definable mutation probability.

It indicates how often the parts of a chromosome will be mutated. This probability

should usually be set fairly low (0.01 is a good first choice). If mutation probability

is 100 per cent, whole chromosome is changed, if it is 0 per cent, nothing is changed.

Mutation is made to prevent falling GA into local extreme, but it should not occur

very often, because then GA will change to random search.

Figure 3.3. An example of a mutation operation on a solution string.

3.2. Fitness Function

A fitness function evaluates each solution to decide whether it will contribute

to the next generation of solutions. In other words, the fitness value is an attribute

related to an individual’s strength or the probability of survival and reproduction of

this individual. A fitness function is usually a form of the utility function of the system

that is tried to be optimized.

9

3.3. Initial Population

The distribution of fitness values of individuals over population highly depends on

the predecessor population since every generation is created from previous generation.

However, the first generation to be the parent of all offsprings should initially be created

in such a way that it will produce children having high fitness values. Therefore,

creation of the initial population needs careful consideration. A pure random based

approach can be used but it may produce individuals having quite low fitness values due

to the nature of randomness. This situation can be removed by creating the individuals

of initial population not only randomly but also based on some information about

solution space; that is, by using some heuristics. However, the level of heuristics should

be considered carefully too because creating individuals that are very similar to each

other according to their fitness values may lead the system to premature convergence

or local optima.

3.4. Stopping Criteria

Stopping criteria are the criteria that the GA engine decides stopping. There can

be three stopping criteria:

• Stopping after a certain number of generations

• Stopping after founding global optimum solution

• Stopping in the case of the change in the convergence of the system is below a

given threshold value in the last n generations.

Each of these criteria can be used alone as well as a combination of more than

one of them.

3.5. Summary

Given a clearly defined problem to be solved and a bit string representation for

candidate solutions, a simple GA works as follows:

10

1. Start with a randomly generated population of n l-bit chromosomes (candidate

solutions to a problem).

2. Calculate the fitness (x) of each chromosome x in the population.

3. Repeat the following steps until n offspring have been created:

a. Select a pair of parent chromosomes from the current population, the

probability of selection being an increasing function of fitness. Selection is done

”with replacement,” meaning that the same chromosome can be selected more

than once to become a parent.

b. With probability pc (the ”crossover probability” or ”crossover rate”), cross

over the pair at a randomly chosen point (chosen with uniform probability) to

form two offspring. If no crossover takes place, form two offspring that are exact

copies of their respective parents. (Note that here the crossover rate is defined

to be the probability that two parents will cross over in a single point. There are

also ”multi-point crossover” versions of the GA in which the crossover rate for a

pair of parents is the number of points at which a crossover takes place.)

c. Mutate the two offspring at each locus with probability pm (the mutation

probability or mutation rate), and place the resulting chromosomes in the new

population. If n is odd, one new population member can be discarded at random.

4. Replace the current population with the new population.

5. Go to step 2.

Each iteration of this process is called a generation. A GA is typically iterated

for anywhere from 50 to 500 or more generations. The entire set of generations is called

a run. At the end of a run there are often one or more highly fit chromosomes in the

population. Since randomness plays a large role in each run, two runs with different

random-number seeds will generally produce different detailed behaviors [6].

11

4. RELATED WORK

At the lowest level, the Aibo’s gait is determined by a series of joint positions

for the three joints in each of its legs. Hornby et al. [7] used GA to learn a set of

low level parameters that described joint velocities and body position to develop a gait

as an early attempt. More recently, trajectories of the Aibos four feet through three-

dimensional space have been used to develop a higher level representation for Aibo’s

gait. An inverse kinematics calculation is then used to convert these trajectories into

joint angles. Among higher-level approaches, most of the differences between gaits

that have been developed for the Aibo stem from the shape of the loci through which

the feet pass and the exact parameterizations of those loci. For example, a team

from the University of New South Wales achieved the fastest known hand-tuned gait

using the high-level approach described above with trapezoidal loci. They subsequently

generated an even faster walk via learning [8]. A team from Germany created a flexible

gait implementation that allows them to use a variety of different shapes of loci [9].

Among these approaches, ParaWalk, which is developed by rUNSWift 4-legged

robot soccer team of UNSW (The University of New South Wales), is the first walking

routine that uses parameters for describing the walking action. It is a very flexible

and robust walking routine and operates on a set of supplied parameters such as the

height of the chest of the robot from the ground, the number of waypoints needed

to complete a full step cycle, etc. These parameters can be defined in such a way to

produce particular stances and walking styles.

In this chapter, the structure of ParaWalk is explained.

4.1. Kinematic Model

Kinematic model of an Aibo leg designed by rUNSWift approximates each seg-

ment of the leg to be a right triangle as shown in Figure 4.1 and this makes the necessary

calculations more complex. Also the coordinate system they used is kind of different;

12

according to their coordinate system, x axis grows towards front of the robot, y axis

grows towards the ground, and z axis grows towards the left side of the robot, parallel

to the ground.

Figure 4.1. Kinematic model of an Aibo leg developed by rUNSWift [10].

4.2. Parameters

Walking parameters used by rUNSWift can be listed as;

• Step duration related

PG: Number of steps needed to complete one full step (i.e. the paw comes

back to its initial position).

• Rectangular locus related

hdF: Height of the rectangle used as front locus from the ground.

hdB: Height of the rectangle used as back locus from the ground.

• Initial paw locations related

hF: Height of the chest of the robot from ground.

hB: Height of the back of the robot from ground.

fs0: Sideway distance of the paws of the front legs from shoulder.

ff0: Forward distance of the paws of the front legs from shoulder.

13

bs0: Sideway distance of the paws of the rear legs from shoulder.

bf0: Forward distance of the paws of the rear legs from shoulder.

The default values of these parameters are shown in Table 4.1.

PG use 65 as default. Can be any +ve multiple of 5.

hF use 73 mm as default. Limited by physical constraints.

hB use 97 mm as default. Limited by physical constraints.

hdF use 16 mm as default. Limited by physical constraints. Must be ¿0

hdB use 19 mm as default. Limited by physical constraints. Must be ¿0

ff0 use 33 mm as default. Limited by physical constraints.

fs0 use 20 mm as default. Limited by physical constraints.

bf0 use -35 mm as default. Limited by physical constraints.

bs0 use 20 mm as default. Limited by physical constraints.

Table 4.1. Default values of the walking parameters used by ParaWalk [11].

4.3. Locus

ParaWalk initially used rectangular locus. Rectangular locus means that the paw

draws a rectangle on the air when performing the walking action. In ParaWalk, the

heights of forward and back locus are included in the parameter list. Since the widths

of rectangles are calculated according to the locus limits, they are not needed to be used

as saperate parameters. Simple representation of rectangular locus used by rUNSWift

is shown in Figure 4.2.

After using some machine learning techniques, they obtained some kind of trape-

zoidal loci. These loci have dramatically changed the awlking performance of the robot.

Resulting shapes are shown in Figure 4.3.

4.4. Walking Styles

To produce a walking motion, the legs must not be at the same position on the

walk locus at the same time. Essentially, the legs must move out of phase of each other.

14

Figure 4.2. Rectangular locus used by rUNSWift [10].

Figure 4.3. The loci produced by minimization technique in the sagittal plane, shown

in bold. The dotted lines show the basic rectangular loci.

15

Human walking is actually uses a similar approach. One leg is lifted, moved forward,

and then dropped, while the other stays where it was. Once the first step has been

taken, the other leg is then lifted and basically mirrors the same action taken by the

first leg.

Different gait types can be obtained by shifting the movement phases of each leg

in different manners. Timing of each leg and resulting walking type is shown in Figure

4.4

Figure 4.4. Different timing of each legs motion results in different walking styles [10].

There are various stance types. In Sony’s default walking style, high stance is

used in which the robot stands on its paws. However, ParaWalk uses low stance in

which the robot would have the front forelegs flat on the ground when walking, while

the rear legs walked ”normally” on paws [10]. Low stance causes a body tilt which

promotes the momentum of the robot while walking forwards. Sony’s default high

stance and ParaWalk’s preferred low stance are illustrated in Figure 4.5.

Figure 4.5. (a) High stance and (b) low stance.

16

4.5. Omnidirectional Motion

Omnidirectional walking can be thought as the motion of a shopping cart, and

can be obtained by treating the legs as wheels. This is illustrated in Figure 4.6.

Figure 4.6. Using legs as the wheels of a shopping cart [12].

In order to achieve this motion, 3 walk components named forward, sideways, and

turn are used. These components are represented as 2-dimensional vectors and they

are added vectorally in order to obtain one resulting vector and its symmetric part

according to the initial paw location. These two resulting vectors together rpoduces

the limits of the locus; that is the limits of each leg’s area of operation. The operation

of obtaining locus limits by using forward, sideways, and turn components is illustrated

in Figure 4.7.

Figure 4.7. Forward, sideways, and turn components are added vectorally to pbtain a

resulting vector; which indicates the direction and limit of the paw movement [11].

17

5. PROPOSED APPROACH

In this chapter, our proposed approach, including kinematic model, parameter

determination and description, locus representation, and parameter optimization by

using GA is explained in detail.

5.1. Kinematic Model

Kinematics is the study of how things move. In particular, we want to have

methods for precisely calculating the position of points on a manipulator (forward

kinematics). Further, we need to know which joint values will achieve a desired position

(inverse kinematics) in order to produce controlled motions.

Manipulators are constructed from a series of links, each connected by an actu-

ator. A series of links is also called a chain, with one end defined as the base, and

the other called the end effector. Actuators are commonly either revolute joints which

cause rotation about an axis, or prismatic joints, which cause translation along an axis.

All of the AIBO’s joints are revolute [13].

5.1.1. Inverse Kinematics

The inverse kinematics problem is much more interesting and its solution is more

useful. At the position level, the problem is stated as, ”Given the desired position of

the robot’s paw, what must be the angles at all of the robots joints?”.

In our approach, inverse kinematics techniques are used to calculate the desired

joint angles while the paw is moving along the path determined by the locus of the

leg. The locus is divided into pStep (to be explained in Section 5.4) points, and each

of these points has (x,y,z) values. When the paw is to move to the location of the

next point on the locus, the following formulas are used to calculate the necessary joint

angles in order to make the paw move towards this point.

18

Figure 5.1. Simple kinematic model representation for front right leg.

The law of cosines is used for calculating the knee angle (θ3).

d2 = x2 + y2 + z2

I1
2 + I2

2
− 2I1I2 cos(π − θ3) = d2

θ3 = π − arccos(
I1

2 + I2
2
− d2

2I1I2

)

Then the abductor angle θ2 is calculated.

θ2 = arcsin(
x

I1 + I2 cos(θ3)
)

Finally, rotator angle θ1 is calculated.

19

θ1 =
y cos(θ2)(I1 + I2 cos(θ3)) + zI2 sin(θ3)

yI2 sin(θ3) − (z cos(θ2)(I1 + I2 cos(θ3)))

5.2. Walking

Trot gait, in which the diagonally opposed legs are synchronized, is used as the

primary gait type. Omnidirectional motion is inherited from ParaWalk as it is. The

only difference is the meaning of sideways and turn components. In ParaWalk, default

sideways direction is leftwards, and default turn angle increases counterclockwise. In

our approach, default sideways direction is rightwards, and default turn angle increases

clockwise. Resulting motions for different combinations of walk components is shown

in Figure 5.2.

Figure 5.2. Resulting motions with different combinations of forward, sideways, and

turnCW parameters: (a) anly forward, (b) only sideways, (c) only turnCW, (d)

forward and turnCW together [10].

5.2.1. Representing the Locus

According to the research done so far, rectangular, trapezoidal and half elliptic

loci are not effective; in fact they have a hindering effect on robot’s movement. Espe-

cially the movement of rear is the cause of this effect. While performing these kinds of

movements the leg touches the ground in the same direction of the movement, which

in turn decreases the robot’s momentum at that time.

20

Figure 5.3. Movement of the paw on a (a) rectangular locus and a (b) half elliptic

locus.

Proposed locus is in the shape of an ellipse cut from below in some proportion.

This shape can be approximated by a hermite curve and it is illustrated in Figure 5.4.

Figure 5.4. Proposed locus in the shape of a hermite curve.

With the introduction of elliptic locus, this effect is avoided since the leg touches

the ground after moving in the reverse direction of the movement for a short period of

time. This movement type guarantees that the moment of the robot is not hindered

but increased. Also, elliptic locus makes teh movement of the leg smoother.

5.3. Object-oriented design of the locomotion module

Locomotion module is designed by using an object-oriented approach. First of

all, robot is thought as a single object composed of many other objects. Specifically,

an AIBO robot physically consists of four legs, a head, and a tail, each of which carries

different number of joints. Each Leg has three Joints, which are the rotator, the

abductor, and the knee joints. The Head has three Joints, which are pan, tilt, and roll

joints. Finally, the Tail has two Joints, which are pan and tilt joints. All these objects

are defined as a separate class. The classes used for the locomotion module is shown

21

in Figure 5.5.

Figure 5.5. Class diagram showing the relations between classes used in the

locomotion module.

Leg class has a method named moveTo for calculating the required joint angles

to be able to reach a specific point in a 3-dimensional space. It performs the aforemen-

tioned inverse kinematics calculations and determines the knee, abductor, and rotator

angles of the leg, respectively.

Besides these robot related classes, there are two very important classes. One

is MotionManager class, which is responsible for the coordination of all movements,

and the other is GA class, which is responsible for generating an initial population

according to the sample string provided, and then performing the main GA operations

(reproduction, crossover, mutation) on each population in order to generate parameter

lists to be used during experiment processes.

22

5.4. Parameter Optimization

There are 11 parameters used by the new walking engine. These parameters can

be categorized as step duration related, locus related, and initial paw locations related

parameters.

• Step duration related

pStep: Number of steps needed to complete one full step (i.e. the paw comes

back to its initial position).

• Locus related

fLocH: Height radius of the ellipse to be used as the locus for front legs.

fLocDH: Perpendicular distance of the center of the ellipse of the front locus

from the initial paw location.

bLocH: Height radius of the ellipse to be used as the locus for rear legs.

bLocDH: Perpendicular distance of the center of the ellipse of the rear locus

from the initial paw location.

• Initial paw locations related

hF: Height of the chest of the robot from ground.

hB: Height of the back of the robot from ground.

fs0: Sideway distance of the paws of the front legs from shoulder.

ff0: Forward distance of the paws of the front legs from shoulder.

bs0: Sideway distance of the paws of the rear legs from shoulder.

bf0: Forward distance of the paws of the rear legs from shoulder.

GA is used for optimization of these parameters. Initially, a set of hand-tuned

parameters are given to the GA engine, and it produces some predefined number of

chromosomes by distorting the parameter values on the sample string to obtain a

generation. Structure of our parameter set and a sample string are shown in Figure

5.7 and Figure 5.8, respectively.

23

Figure 5.6. Parameters related to initial paw locations [10].

Figure 5.7. String representation of walking parameters.

Figure 5.8. A sample string.

24

Once a generation is constructed, the process begins. GA engine starts with the

first chromosome and replaces the current parameter values on the robot side with

these new values taken from this chromosome and the robot starts walking. After the

robot completes 8 steps, the fitness of this parameter set (chromosome) is calculated

according to our fitness function. Since the main objective of this process is to obtain

the optimal parameter set that provides the faster walking without any diversion, our

fitness function is constructed in such a way that it would promote moving straight

forward, and punish either rotational or sideways diversion. Our fitness function is

fitness = 0.9 ∗ fwd − 0.4 ∗ sdwDiv − 0.4 ∗ rotDiv

where fwd is total forward distance reached, sdwDiv is sideways diversion, and

rotDiv is rotational diversion. When all the chromosomes are tried and associated with

a fitness value, the reproduction process begins. During reproduction process, a ran-

dom number between zero and total fitness values of all chromosomes is generated and

a chromosome is selected by using the roulette wheel technique mentioned in Chap-

ter 3. After that second chromosome is selected similarly. Then these chromosomes

exchanges some patterns according to a crossover probability rate and generates two

new chromosome to be copied into the new generation. Also, during crossover process,

some parameter values can be changed according to a mutation probability rate.

However, there are some differences between our approach and simple GA ac-

cording to the techniques used for performing crossover and mutation operations.

• Crossover

In our approach, there are more than one crossover point determined by the range of

parameter category; that is locus related parameters are exchanged in their own range,

and initial paw locations related parameters are exchanged in their own range. These

clusters are shown in Figure 5.9. Before performing crossover operation, one of the

25

three clusters is selected, and then the crossover operation is performed within this

cluster as shown in Figure 5.10.

• Mutation

In mutation operation, the amount of distortion is determined according to the fitness

value of this chromosome. That is, if the fitness values is small, the amount of distortion

is greater, and if the fitness value is high, which means that this parameter set is good

enough, then the amount of distortion is smaller.

Figure 5.9. A sample chromosome seperated into three parts. These parts are related

to number of waypoints on the locus, shape of the front and back loci, and initial paw

locations, respectively.

Figure 5.10. Technique used for the crossover operation in our approach.

26

initially construct a sample string

generate a population by distorting the sample string

while currentGenerationIndex < MAX_NUM_OF_GENERATIONS

for each chromosome in current population

set the values carried by this chromosome as walking parameters

totalFitness = 0

for 1 to AVG_COUNTER

make the robot move forward 8 steps

totalFitness += the fitness of this parameter set (chromosome)

current chromosome’s fitness = totalFitness / AVG_COUNTER

currentGenerationIndex ++

Figure 5.11. Pseudo-code implementation of the proposed approach.

As a summary, a pseudocode representation of the parameter optimization process

is provided in Figure 5.11.

27

6. EXPERIMENTAL STUDY

In this chapter, stages of experimental study is explained in detail and sowtware

and hardware platforms used during this project is mentioned.

6.1. Environments

6.1.1. Webots

Webots is a mobile robotics simulation software that provides a rapid prototyping

environment for modelling, programming and simulating mobile robots. The included

robot libraries enable transferring control programs to many commercially available

real mobile robots including the Sony Aibo ERS-210 robot [14].

Figure 6.1. A screenshot from Webots simulator environment showing an Aibo

ERS-210 on its walking test platform.

Initially a hand-tuned parameter set is created and a small portion (i.e. 25 per

cent) of the initial generation is constructed by slightly distorting the parameter values

of the sample string. The remaining part of the generation is constructed by using much

more distorted individuals. After that the training process begins. Each chromosome

is tried for a pre-defined number of times (called AVG COUNTER in our GA engine)

and the average fitness value obtained from these trials is assigned as the fitness value

of the current chromosome as shown in Figure 6.2. This process continues until a

28

maximum number of generations is reached.

Figure 6.2. A screenshot from the simulator environment during the training process.

6.2. Results

Many experiments were made with different number of generations, different num-

ber of individuals in a generation, and different crossover and mutation rates. Figure

6.3 shows the result of an experiment in which 30 generations each having 50 individuals

are used with a crossover rate of 80% and a mutation rate of %10.

Figure 6.3. Average and best fitness values of 30 generations each having 50

individuals.

In Figure 6.4 the result of an experiment in which 50 generations each having 100

individuals are used with a crossover rate of 90% and a mutation rate of %5 is shown.

29

Figure 6.4. Average and best fitness values of 50 generations each having 100

individuals.

Both of these sample results show that GA works quite well since both the best

and the average fitness values show increasing tendencies. The rippling effect seen on

best fitness values is a result of the randomness of the simulator environment, that is

when the same parameter set is tried in the next generation, it may have a different

fitness value.

After these experiments, the learned parameter set is shown in Figure 6.5. Fine-

tuning this parameter set on a real robot is left as a future work.

Figure 6.5. Resulting parameter set that provided best fitness value.

Finally, Table 6.1 shows the performances of different walking engines, and im-

provement provided by our proposed engine.

30

Walking Engine Performance

Default Sony-type ≈ 4 cm/sec

ParaWalk ≈ 21 cm/sec

Our engine (hand crafted) ≈ 25 cm/sec

Our engine (optimized) ≈ 27 cm/sec

Table 6.1. Walking engine vs. Performance.

31

7. CONCLUSION & FUTURE WORK

Today robots are being used in several important endeavors; industry, medical

surgery, agriculture, forestry, and planet exploration. As the robots become smarter,

the tasks that they can accomplish become more complex. Recently, some mobile

robots are such smart that they can even play soccer which is one of the most complex

activities that a humanbeing performs. It requires some capabilities such as vision, lo-

comotion, localization, planning, and communication; however, locomotion is probably

the most important one for a mobile robot to achieve its goal as a soccer player.

In this work a new inverse kinematics based, fully object-oriented, and parametric

motion module for Aibo robot is presented. GA is used for parameter optimization

process. Since the aim of this project is to make Aibo move faster, this problem can

be thought as a maximization problem; i.e. our primary aim is to maximize the fitness

function value.

Some possible extensions that this project may have can be listed as:

• Some special static actions (such as kicking actions) can also be parametrized

and these parameters can be fine-tuned by using GA.

• Omnidirectional motion can be optimized for obtaining better forward, sideways,

and turning motion and also the motion resulting from the combination of these

three components.

• Fitness function can be modified in such a way to promote a motion type that

would keep the head more stable in order to get less distorted camera image.

• Resulting parameter set can be fine-tuned on a real robot walking on a real field.

32

APPENDIX A: Code Used in Parameter Optimization

Process

GA code

#pragma once

#include <math.h>

const int STR_LEN = 11;

const int MAX_POP = 100;

const int MAX_GEN = 50;

const int ELITISM_FACTOR = MAX_POP / 20;

const float CROSSOVER_RATE = 0.9;

const float MUTATION_RATE = 0.2;

const float AVG_COUNTER = 2;

typedef struct

{

int chromo[STR_LEN];

double fitness;

} individual;

class GA

{

public:

GA(void);

individual population[MAX_POP];

individual tmppop[MAX_POP];

int genCount;

int currentInd;

void crossover(individual ind1 , individual ind2);

void mutate(individual ind);

individual select(void);

double totalFitness(void);

void initPopulation(int sample[]);

void resetPopulation(void);

individual nextIndividual(void);

33

float fitness(float last[] , float first[]);

void setFitness(int indIdx , float value);

individual highestFitness(void);

void sort(void);

~GA(void);

};

Supervisor code

if(standStill)

{

if(error || ga->genCount == MAX_GEN)

{

if(supervisor_node_was_found(robot))

{

// Write result to files

supervisor_simulation_quit();

}

}

else if(loop % (mm->pstep * 8) == 0)

{

if(supervisor_node_was_found(robot))

{

supervisor_field_get(robot,

SUPERVISOR_FIELD_TRANSLATION_X|

SUPERVISOR_FIELD_TRANSLATION_Z|

SUPERVISOR_FIELD_ROTATION_ANGLE,

&position,SIMULATION_STEP);

fit = ga->fitness(position,robot_initial_position);

fitness += fit;

avgCounter++;

printf("fitness-%d: %lf\n\n\n", avgCounter , fit);

supervisor_field_set(robot,

SUPERVISOR_FIELD_TRANSLATION_X|

34

SUPERVISOR_FIELD_TRANSLATION_Z|

SUPERVISOR_FIELD_ROTATION_ANGLE,

robot_initial_position);

if(fit <= 0.0f)

{

error = true;

}

else if(ga->currentInd == MAX_POP - 1 && avgCounter == AVG_COUNTER)

{

for(int i = 0; i < STR_LEN; i++)

{

// append best, worst and average chromosome values

// to corresponding strings to be copied into files

}

if(avgCounter == AVG_COUNTER)

{

ga->setFitness(ga->currentInd , (fitness / avgCounter));

printf("average fitness: %lf\n\n\n",(fitness / avgCounter));

avgCounter = 0;

fit = 0;

fitness = 0;

i = ga->nextIndividual();

mm->setParams(/* current gene values */);

}

}

loop = 1;

}

mm->calcJointValues();

35

REFERENCES

1. Robocup Organization

”http://www.robocup.org”

2. H. L. Akın, H. Köse, C. Meric.li, K. Kaplan, B. C. elik and T. Meric.li

Cerberus’05 Team Description Paper

3. Sony Aibo

”http://www.sony.net/Products/aibo/”

4. OPEN-R SDK

”http://openr.aibo.com/openr/eng/no perm/faq openrsdk.php4”

5. Goldberg, David E.

”Genetic Algorithms in Search, Optimization, and Machine Learning” Addison-

Wesley 1989

6. Mitchell, Melanie

”An Introduction to Genetic Algorithms” MIT Press 1996

7. Hornby, G.S., Fujita, M., Takamura, S., Yamamoto, T. and Hanagata, O.

Autonomous Evolution of Gaits with the Sony Quadruped Robot. 1999

8. Min Sub Kim, William Uther

Automatic Gait Optimisation for Quadruped Robots

School of Computer Science and Engineering, University of New South Wales

9. Thomas Röfer

Evolutionary Gait-Optimization Using a Fitness Function Based on Proprioception

Center for Computing Technology (TZI), FB 3, Universität Bremen

10. UNSW 2003 team report

36

”http://www.cse.unsw.edu.au/ robocup/report2003.pdf”

11. UNSW 2000 team report

”http://www.cse.unsw.edu.au/ robocup/2002site/2000PDF.zip”

12. Bernhard Hengst, Darren Ibbotson, Son Bao Pham, Claude Sammut

Omnidirectional Locomotion for Quadruped Robots

School of Computer Science and Engineering, University of New South Wales

13. Exploring Tekkotsu Programming on the Sony AIBO

”http://www-2.cs.cmu.edu/ dst/Tekkotsu/Tutorial/forwardkin.shtml”

14. The Webots mobile robotics simulation software

”http://www.cyberbotics.com/products/webots/”

37

