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Abstract—Robot soccer is an excellent testbed to explore scoring a goal. Therefore, effective action selection iivary
innovative ideas and test the algorithms in multi-agent syiems  state has a vital role in being successful in a soccer game.
(MAS) research. A soccer team should play in an organized s work also aims to learn when to select which action;

manner in order to score more goals than the opponent, which that is. | . inal betw tat d acti .
requires well-developed individual and collaborative skis, such at 1s, learning a mapping between states and actions since

as dribbling the ball, positioning, and passing. However, one  the actions of an agent are determined by the state of its
of these skills needs to be perfect and they do not require environment.

highly complicated models to give satisfactory results. Tis

paper proposes an approach inspired from ants, which are The motivation behind this work is to create a team of

modeled as Braitenberg vehicles for implementing those sk§  autonomous robots that are able to play soccer by using
as combinations of very primitive behaviors without using  compinations of very primitive behaviors as ants do when

explicit communication and role assignment mechanisms, ah lishi lex task i ¢ Th .
applying reinforcement learning to construct the optimal sate- accomplishing a complex task in nature. € main source

action mapping. Experiments demonstrate that a team of robgs ~ Of inspiration is the complexity of behaviors that Braiten-

can indeed learn to play soccer reasonably well without usip  berg vehicles [2] can demonstrate although their undeglyin

complex environment models and state representations. Adt architectures are extremely simple.

very short training sessions, the team started scoring moréhan

its opponents that use complex behavior codes, and as a resul Because of the inherent complexity of MAS, Machine

of having very simple state representation, the team coulddapt Learning (ML) is an interesting and promising area to com-

to the strategies of the opponent teams during the games. . . . . D T

Index Terms—Braitenberg vehicles, robot soccer, reinforce- bine with MAS_’ US'”9 ML techniques, effe,C“Ve |nd|\{|dual
ment learning. and collaborative skills can be learned in a multi-agent
system. However, most of the ML applications require a

|. INTRODUCTION large amount of labeled examples; that is, one has to provide

Multi-agent Systems (MAS) is the subfield of artificial information about thousands of different situations inewsrd

intelligence (Al) that aims to provide both principles fare 0 make a machine learn a concept. On the other hand, in
struction of complex systems involving multiple agents and©POt soccer case, it is impossible to provide labeled exam-
mechanisms for coordination of individual agents’ behesio PI€s to the system because of the complexity and dynamic
[1]. MAS are becoming popular because of their robustnesstructure of the enwronment._ Therefore, a trial/error and
and success rate in achieving a given task especially in rediéward/punishment approach is necessary to be able make
time, complex domains since these kinds of domains requit€aming possible in this domain. Reinforcement Learning
agents to act effectively both autonomously and as part of €RL) iS @ learning method that can be used when the
team. Being a complex and dynamic environment, and having9€nt is only informed about the degree of correctness (or
a goal that can be achieved more successfully with multipldcorrectness) of a sequence of actions. Specific@iiy)

agents than a single agent, soccer is an excellent testbed fJ90rithm [3] , which is a RL method, is used in this work.
MAS research. According to the training results, a significant decreasthén

The main goal in a soccer game is to score more goals thdimber of opponent goals was observed, which means that
the opponent team and win the game. In order to achievihe team learned a defensive behavior, as well as an increase
this goal, the team should play in an organized mannefn the number of own goals, which is an indicator of a learned
That requires having well-developed individual skillsceas ~ Offensive behavior.
d”bb"”g and E'Ck'ng the b_gll, f"md coIIaborat_lvg_s_lélllzmb The rest of this paper is organized as follows. Section
as passing and proper positioning. However, individuabtsb | rqyides information about related work and Section

and the team as a whole should preferably perform the begf ‘oaporates on our proposed approach. Experiments are
possible action in all states in order to increase the chahce explained in detail and results are discussed in Section IV.

*This work is supported by Bogazi¢i University Scientificesearch Section V Summanz_es and concludes the paper, and proposes
Projects Grant 06HA102 and by TUBITAK with Project Grant E162. some further extensions.



1. RELATED WORK B. Learning Large Scale Tasks

Robot soccer has been a very fruitful domain for intelligent Luke et al. [10] applied genetic programming to behavior-
robotics and multi-agent systems researchers. There habased team coordination in the RoboCup Soccer Server
been many research efforts on various problems related womain. They initialized the players of the team as random
both individual robot skills, which are necessary to playmovers, then the players evolved to “kiddie-soccer” player
soccer, and team coordination, which is essential to imgrovin which all players chased the ball almost aimlessly, then
the efficiency of the players and hence the quality of thesome of the players learned to perform defender behavidr, an
game. finally the team converged to an acceptable solution, where

Related work can roughly be divided into two groups asthe players began to disperse throughout the field and to pass
learning specific instances or sub-games and learning large teammates when appropriate instead of kicking stramht t

scale tasks. the goal.
] -~ The Darwin United team by Andre and Teller [11] was
A. Learning Specific Instances or Sub-Games evolved as a team of coordinated agents in the RoboCup

Stone et al. [4], [5] introduced keepaway as a benchmarkimulator. Given the lowest level perceptual inputs, each
for machine learning research. The keepers learned indiviitnember of the team learned to execute series of the most
ually when to hold the ball and when to pass to a teammatéasic actions; such darn, kick, anddashin order to be able
The proposed method was implemented on the RoboCul play soccer as a team. Inspired from the work of Luke et
simulated soccer environment [6] and they represented tha. [10] they also used genetic programming for evolution,
state with 13 state variables for 3 keepers versus 2 takemoviding initial generations as a set of automatically gen
and with 18 state variables for 3 keepers versus 3 takemated functions that encode some simple functionality sisch a
versions. Considering that keepaway is only a very smalfunning to the ball and kicking.
subproblem of the complete robot soccer domain, the model In his research, Andou [12] focused on the positionings of
is way too complex compared 3 state variables for 4 playerthe players on the field; that way, the team could adjust their
that is defined in our proposed approach. formation according to the opponent’s strategy. The soccer

Kalyanakrishnan et al. [7] extended the keepaway problerfield was divided into grids and a neural network was trained
to half-field offense, analyzed the learning algorithm thas to map the distance measurements of almost all important
been most successful for keepaway, and scaled it to meebjects on the field to the best position for the player. In
the demands of the half field offense task. Inter-agent comerder to refine the result, reinforcement learning was used t
munication was used for more frequent and reliable learningpdate the weights of the neural network. The resulting team
updates. In this work the authors only focused on learningpad a better performance than the teams with fixed player
the behavior of the offense player who has possession of theositions.
ball; the rest of the team followed a pre-defined formation. The most similar work to our approach was published

Merke and Riedmiller [8] modelled the soccer domainby Riekki and Roning [13]. They used a goal-oriented and
as a multi-agent Markov Decision Process, and applietbehavior-based architecture, called ®@mbacontrol archi-
both theoretically founded distributed reinforcementihé@g  tecture, which is inspired by Brooksubsumption architec-
algorithms and emprically and heuristically motivated vady ture [14], [15], where they propose a mode of executing tasks
modified single agent Q-learning algorithm to the problemby modifying and combining primitive reactions. Using this
They trained their team for learning only coordinated offen approach, they could obtain some reasonable team behavior
sive behavior and they obtained promising results, though both offensive and defensive halves of the field. However,
they did not deal with partial observability of state infam all these behaviors were manually defined and there was no
tion. machine learning and optimization included in their work.

Noda et al. [9] considered a very small sub-problem of There have been some significant amount of research done
offensive behavior which requires cooperation among thén allocating tasks to robots in a team given all primitive
attackers. They trained a neural network that provided twactions required to play soccer and some pre-defined roles,
values for shooting directly towards the goal and passing tsuch asattacker supporter midfielder anddefender Mericli
the teammate. Positions of all objects including the plsyer proposed some metrics calculated from positions of robots
the ball, and the goal were fed to the neural network as inpuaind ball on the field, and used a subset of these metrics that
and a binary feedback in the form of success or failure waare proved to be informative statistically [16], [17]. Tkes
used to adjust the weights of the network. After trainingyth most informative metrics were then used to build a task
obtained a strategy where the robots passed the ball to thaitlocation algorithm. The algorithms were implemented and
teammates when the opponent goalie blocked the shoot wagsted on the TeamBots mobile robot simulator environment
and they directly shot the ball towards the goal when thg18]. Kose et al. [19], [20] presented a task allocationoalg
goalie was closer to their teammate. rithm based on free-market approach, in which the players



evaluate their fitnesses to each role by calculating a cost = ! ! L
function for accomplishing the main task of that role. These

costs are exchanged among teammates and whichever player o e T —
offers the lowest cost for a role is assigned to that roleyThe , g M2 4t 4_i|
used low level potential field denitions proposed by Kaplan Pl P e

[21] for motion planning. Balctet.al. and Coradeschet.al. \'a.,__,,_,./'/ ~Tnx

also proposed some different methods for role assignment ‘;T:’

and proper formation tasks [22]—-[24].

All of these methods propose solutions for different aspect
of robot soccer in different scales; however, there has not Fig. 1. Force fields used as the underlying motion mechanism.
been any attempt to try to learn soccer as a whole using very
primitive behaviors and extremely small state-action spac

1 1 1 1

which is the main focus and contribution of this work. for the robot to end up facing towards a point when it meets
the ball. Other robots (represented as a red circle) and the

Ill. BRAITENBERG SOCCER border lines have repulsive force fields on them in order to

In his book [2], Valentino Braitenberg describes a numbeK€€P our robot away from them and inside the border lines,

of wondrous vehicles that behave in unexpectedly comf€SPectively. ,
plex ways based on the use of a few electronic neurons. The main goal in a soccer game is to score more goals than

Braitenberg gives this as evidence for the “law of uphillt"® Opponentteam, which can be achieved by carrying and/or
analysis and downhill invention”. What this means is thatPuShing the ball towards the opponent goal, specifically
it is much more difficult to try to guess internal structure 2€hind the goal line. Making an analogy from the nature, the
just from the observation of behavior than it is to create thd?€havior that we observe in ants while they are carrying food
structure that results in the behavior. Similar in concept t {© their nests is a perfect biological inspiration for meag!

Grey Walters's seminal neural work with his robot tortoisest"iS task. If we treat the robots as ants, the ball as food,
[25], Braitenberg’s vehicle behavior is more straightfars, ~ 2"d the opponent goal as their nests, then what we actually

making it somewhat easier to follow, both theoretically and®SK Our “soccer playing ants” to do is to carry the food to
logically. Therefore, it is easier to implement into reabetic ~ teir nests as quickly and easily as possible while avoiding
designs. all the obstacles that they sense on the way. In fact, all

The main motivation behind this work is that playing ©f the “complex” behaviors required for achieving this task
soccer reasonably well does not require highly complicate§Merge from combinations of the two primitive behaviors tha
models for each skill, vast state spaces, and long trairiag s W& have mentioned previousigoving towards a poinand
sions that last for thousands of episodes; at least for nbotr moving away from a poinvhich in some sense very similar

soccer players. Hence, we aimed keeping the representatifh € subsumption architecturl5]. If the robot

simple yet informative enough in order to make it possible fo « moves towardthe balland moves towardthe opponent
our robot soccer players to learn both how to use individual ~ 90al, attacker behavior is observed

skills; such as kicking, dribbling, and avoiding opponents  moves towardshe ball and moves towardshe home
efficiently and how to improve collaborative skills; such as ~ goal, defender behavior is observed

proper positioning and passing. If we take a closer look at » moves away fronthe ball and moves towardsthe

the general structures of these skills, we see that theyaa# h opponent goalsupporter behavior is observed
two primitive behaviors in commonmoving towards a point ~ « moves towardshe balland moves towards teammate,
and moving away from a pointThese behaviors can easily passing behavior is observed.

be implemented as the behaviors of Braitenberg vehiclesiigure 2 illustrates those behaviors. Passing and attgckin
such as “aggression” and “fear”, and the implementation cahave similar structures; moving towards a point while agnin
be approximated using force fields as shown in Figure owards another point, and when the point falls within a cer-
[21]. Force fields are one of the simplest and most effectivéain angle range, kicking the ball towards the point. De¢ens
controllers for mobile robots. A force field is basically a and support behaviors are different in the sense that they ar
combination of some attractive and repulsive forces on aimplemented as trying to move towards / away from two
object. For example, being the primary object of interest ordifferent points at the same time, hence ending up at where
the field, the ball has an attractive force field on it whereashe vector sum of those directions point. The intermediate
an obstacle on the field, such as an opponent defender, higes with terminal dots in Figure 2 indicate the points wher
a repulsive force field on it. In Figure 1, an attractive forcethe robot ends up staying while performing defender and
field is placed on the ball (represented as an orange circle isupporter behaviors. Also, an implementation detail sthoul
the middle) as well as a circular field that makes it possiblébe given in order to understand how long distance kicks and



different primitive behaviors, namely attacking the oppioh

goal, supporting the attacker, defending the home goal,
passing to the closest teammate, and passing to the teammate
that is closest to the opponent goal. It is more convenient
and easier to implement to assign probability values toethes
actions in a given state and pick the one that will result & th
highest reward; that is the one with the highest probability
value. Therefore, the state-action mapping representiio

Supporter

' - _— i ) . ballCell, closest, dominance, action — probability
Fig. 2.  Combination of the primitive behavioraoving towards a point

andmoving away from a pointb create more “complex” behaviors, such as
offense (red), defense (dark blue), support (green), assdimg (blue). Initially the probability values are all equal a2, which

means that all five actions have equal chances to be selected
in all states. Adjustment of those probability values is @on
through learning, in particulaeinforcement learningSpecif-
ically, the Q()) [3] algorithm is used in this work. After the

Q@ values are computed, they are normalized so that they
could be treated as probability values and the sum of the
probabilities of possible individual actions in a giventsta
would be1.0.

Reward, that is an increase in the probability of selecting
an action, or punishment, that is a decrease in the prohabili
of selecting an action is given in two different ways as being
immediate or delayed. Immediate rewards and punishments
are given to the robot based on whether the last action it
performed resulted in pushing the ball closer to the oppbnen
passes work; the robots kick the ball as soon as the point thgpal, or one of the teammates or the robot itself touching the
they aim falls within a certain orientation threshold. ball again in the next step. A delayed reward or punishment is

Now the problem reduces to determining when to choos@iven after a goal is scored and the Iasactions are affected
which action. Since soccer environment is continuous, th&om this assignment inversely proportional to their tengho
first step to take is to discretize the environment by divgdin distances from the last action since these series of actions
the field into grids. Quantization makes the representatioresulted in scoring or receiving a goal. The exploration /
of the positions of each robot and the ball much simplerexploitation rate is decreased throughout the game; thieref
that is just a single number representing tle#l ID. Another initially the robots tend to explore the state-action space
important factor that affects the action selection mecsrani However, after some time, they start exploiting the actions
is the state of the immediate surrounding of the ball, whictthat they decided are more beneficial to perform in a given
is represented as a singllominance valueDominance in state.

a cell is calculated as the difference between the number Since it is almost impossible for any two robots on the
of teammates (including the robot itself) and the number ofield to have the exact same distance to the ball, most of
opponent robots. Dominance value is set2ai§ our robots the time each robot in the team has a different state-action
are dominant] if the opponents are dominant, afdf the  representation tuple for the same state. Therefore, at each
number of robots from the two teams is the same. Figure 8me step, each robot “experiences” a different situation,
illustrates the discretization of the field and the domirmsimc makes a decision based on what it observes, and modifies
a given cell. Blue-red robots belong to our team and yellow-a different part of the probability table. This experienablé
white ones are the opponents. The ball is in the light-greeis shared among the teammates; that is, the robots implicitl
colored cell and the dominance value in that cel2is share their experiences. What actually happens is that they

Another important environmental information for the communicate through changing the environment, which is
robots is their distance to the ball; whether they are thevery similar to what swarms do in nature (stigmergy). That
closest, a teammate is the closest, or an opponent player éiminates the need for an explicit communication protpcol
the closest. Similar to the dominance value, this infororati simplifying the model even further.
is also represented as three discrete values. In some situations proper positioning may be more bene-

In a given state, the robot can perform one of the fiveficial than chasing the ball. One of the preferred positignin
different actions that are observed when the robots combingtyles is the diamond formation in which one of the robots

Fig. 3. Portion of the quantized robot soccer field.
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Fig. 4. Diamond formation as a result of emergent assignnoérthe
attacker, supporter, and defender behaviors.

attack the opponent goal, two robots support the attacker ° B
from two sides, and one robot stays back to defend the own ! o T
goal. Figure 4 shows the diamond formation that emerged as
the assignment of the positioning related and chasingertlat Fig. 5. Results of the games playéa) on the empty field, then against
roles among the robots. (b) NullTeam (c) BrianTeam and (d) MarketTeam

One of the main advantages of the approach that we

ropose is that since the state-action space is very small . : . -
brop P y uses a market-driven role allocation algorithm and a simila

|t|;sirﬁ)osz|ballienstf{) :etigr::p?ﬁgp gi]stTeearGil)?r?enteo nfjeeatl??/l/?thwmle otential field approach in which the coefficients of the field
playing ag ' 9 . rces are trained by using Genetic Algorithms (GA) [19],
opponent team on the fly. Tha.lt also .prowdeslo_bservanon c1@0]. Being a strong and offensive teamarketTeanforced
reasonable behawors very quickly without training themtea our team to learn some defensive behavior. At the end of
for thousands of episodes. each game, thscore-rate which is defined in terms of the

IV. EXPERIMENTS difference between the own score and the opponent score is

. . . used as an evaluation criterion (Equation 1).
The experiments were run on the TeamBots simulation

environment [18], which can be thought of as a simulation {wnSrmSmwsw if ownScore > oppScore,

15 15
Game (x10) Game (xI0)

(c) (d)

of the FIRA - MiroSot league [26], and an approximation of secorerate = ppswg—f{fgfsfg) if ownSeore < oppScore,

the RoboCup Small Size League [27]. A team of five players 0 otherwise

was considered and only the non-goalie players were trained

The goalie ran a very simple positioning code which placed After playing against three teams with differeft, GD,

the robot on the intersection of line that connects the balH S, I, and D values, initial results showed that keeping

and the center of the goal box and the goal line. K in the range of0.5 < K < 1.0 works better since it
There are five different hyper-parameters that affect théeeps the exploration / exploitation rate balanced. A gljgh

course of the game which are the constant determining thigigger history size S = 10) helped making long term

exploration / exploitation raté(, the dimensions of the grid plans by learning a path from a specific position towards

G D, the length of the state-action histolS, and the values the one that leads to an own score. Keeping grid size not

of immediate/ and delayedD rewards / punishments. as big GD = 3 x 3 = 9) helped the robots have a more
An incremental method is followed for training. Initially compact representation of different portions of the field.

the team is trained on an empty field to promote the actionSince these three coefficients with these specific values led

that carry the ball towards the opponent goal without anyfo more own scores, which is the desired result, we kept

intervention. After a relatively short training periodetteam them unchanged and trained the team incremantally using

was forced to play against tidullTeamwhich has stationary these values. Results of the 2-minute games played on the

robots on the field. With the presence of opponent robotempty field, againsNullTeam BrianTeam and MarketTeam

on the field the team learned to deal with the opponenare provided in Figure 5300 games were played in each

robots and reach the opponent goal without colliding withconfiguration, and the average score-rates after evety

the opponents and losing the possession of the ball. In ordgame were recorded. The blue dots represent the score-rate

to let the team develop some defensive skills, the team washereas the red curves represent the general tendency) whic

trained against theBrianTeamteam, the codes of which is towards bigger score-rates as a sign of scoring more goals

come with the TeamBots simulator. Finally, the robots wereand receiving less goals.

trained against a strong team namkthrketTeam which As seen in the results, there is a general tendency to-

(€
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