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Abstract—Robot soccer is an excellent testbed to explore
innovative ideas and test the algorithms in multi-agent systems
(MAS) research. A soccer team should play in an organized
manner in order to score more goals than the opponent, which
requires well-developed individual and collaborative skills, such
as dribbling the ball, positioning, and passing. However, none
of these skills needs to be perfect and they do not require
highly complicated models to give satisfactory results. This
paper proposes an approach inspired from ants, which are
modeled as Braitenberg vehicles for implementing those skills
as combinations of very primitive behaviors without using
explicit communication and role assignment mechanisms, and
applying reinforcement learning to construct the optimal state-
action mapping. Experiments demonstrate that a team of robots
can indeed learn to play soccer reasonably well without using
complex environment models and state representations. After
very short training sessions, the team started scoring morethan
its opponents that use complex behavior codes, and as a result
of having very simple state representation, the team could adapt
to the strategies of the opponent teams during the games.

Index Terms—Braitenberg vehicles, robot soccer, reinforce-
ment learning.

I. I NTRODUCTION

Multi-agent Systems (MAS) is the subfield of artificial
intelligence (AI) that aims to provide both principles for con-
struction of complex systems involving multiple agents and
mechanisms for coordination of individual agents’ behaviors
[1]. MAS are becoming popular because of their robustness
and success rate in achieving a given task especially in real-
time, complex domains since these kinds of domains require
agents to act effectively both autonomously and as part of a
team. Being a complex and dynamic environment, and having
a goal that can be achieved more successfully with multiple
agents than a single agent, soccer is an excellent testbed for
MAS research.

The main goal in a soccer game is to score more goals than
the opponent team and win the game. In order to achieve
this goal, the team should play in an organized manner.
That requires having well-developed individual skills; such as
dribbling and kicking the ball, and collaborative skills; such
as passing and proper positioning. However, individual robots
and the team as a whole should preferably perform the best
possible action in all states in order to increase the chanceof
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scoring a goal. Therefore, effective action selection in a given
state has a vital role in being successful in a soccer game.
This work also aims to learn when to select which action;
that is, learning a mapping between states and actions since
the actions of an agent are determined by the state of its
environment.

The motivation behind this work is to create a team of
autonomous robots that are able to play soccer by using
combinations of very primitive behaviors as ants do when
accomplishing a complex task in nature. The main source
of inspiration is the complexity of behaviors that Braiten-
berg vehicles [2] can demonstrate although their underlying
architectures are extremely simple.

Because of the inherent complexity of MAS, Machine
Learning (ML) is an interesting and promising area to com-
bine with MAS. Using ML techniques, effective individual
and collaborative skills can be learned in a multi-agent
system. However, most of the ML applications require a
large amount of labeled examples; that is, one has to provide
information about thousands of different situations in order
to make a machine learn a concept. On the other hand, in
robot soccer case, it is impossible to provide labeled exam-
ples to the system because of the complexity and dynamic
structure of the environment. Therefore, a trial/error and
reward/punishment approach is necessary to be able make
learning possible in this domain. Reinforcement Learning
(RL) is a learning method that can be used when the
agent is only informed about the degree of correctness (or
incorrectness) of a sequence of actions. SpecificallyQ(λ)
algorithm [3] , which is a RL method, is used in this work.
According to the training results, a significant decrease inthe
number of opponent goals was observed, which means that
the team learned a defensive behavior, as well as an increase
in the number of own goals, which is an indicator of a learned
offensive behavior.

The rest of this paper is organized as follows. Section
II provides information about related work and Section
III elaborates on our proposed approach. Experiments are
explained in detail and results are discussed in Section IV.
Section V summarizes and concludes the paper, and proposes
some further extensions.



II. RELATED WORK

Robot soccer has been a very fruitful domain for intelligent
robotics and multi-agent systems researchers. There have
been many research efforts on various problems related to
both individual robot skills, which are necessary to play
soccer, and team coordination, which is essential to improve
the efficiency of the players and hence the quality of the
game.

Related work can roughly be divided into two groups as
learning specific instances or sub-games and learning large
scale tasks.

A. Learning Specific Instances or Sub-Games

Stone et al. [4], [5] introduced keepaway as a benchmark
for machine learning research. The keepers learned individ-
ually when to hold the ball and when to pass to a teammate.
The proposed method was implemented on the RoboCup
simulated soccer environment [6] and they represented the
state with 13 state variables for 3 keepers versus 2 takers
and with 18 state variables for 3 keepers versus 3 takers
versions. Considering that keepaway is only a very small
subproblem of the complete robot soccer domain, the model
is way too complex compared 3 state variables for 4 players
that is defined in our proposed approach.

Kalyanakrishnan et al. [7] extended the keepaway problem
to half-field offense, analyzed the learning algorithm thathas
been most successful for keepaway, and scaled it to meet
the demands of the half field offense task. Inter-agent com-
munication was used for more frequent and reliable learning
updates. In this work the authors only focused on learning
the behavior of the offense player who has possession of the
ball; the rest of the team followed a pre-defined formation.

Merke and Riedmiller [8] modelled the soccer domain
as a multi-agent Markov Decision Process, and applied
both theoretically founded distributed reinforcement learning
algorithms and emprically and heuristically motivated wayof
modified single agent Q-learning algorithm to the problem.
They trained their team for learning only coordinated offen-
sive behavior and they obtained promising results, though
they did not deal with partial observability of state informa-
tion.

Noda et al. [9] considered a very small sub-problem of
offensive behavior which requires cooperation among the
attackers. They trained a neural network that provided two
values for shooting directly towards the goal and passing to
the teammate. Positions of all objects including the players,
the ball, and the goal were fed to the neural network as input,
and a binary feedback in the form of success or failure was
used to adjust the weights of the network. After training, they
obtained a strategy where the robots passed the ball to their
teammates when the opponent goalie blocked the shoot way,
and they directly shot the ball towards the goal when the
goalie was closer to their teammate.

B. Learning Large Scale Tasks

Luke et al. [10] applied genetic programming to behavior-
based team coordination in the RoboCup Soccer Server
domain. They initialized the players of the team as random
movers, then the players evolved to “kiddie-soccer” players,
in which all players chased the ball almost aimlessly, then
some of the players learned to perform defender behavior, and
finally the team converged to an acceptable solution, where
the players began to disperse throughout the field and to pass
to teammates when appropriate instead of kicking straight to
the goal.

The Darwin United team by Andre and Teller [11] was
evolved as a team of coordinated agents in the RoboCup
simulator. Given the lowest level perceptual inputs, each
member of the team learned to execute series of the most
basic actions; such asturn, kick, anddashin order to be able
to play soccer as a team. Inspired from the work of Luke et
al. [10] they also used genetic programming for evolution,
providing initial generations as a set of automatically gener-
ated functions that encode some simple functionality such as
running to the ball and kicking.

In his research, Andou [12] focused on the positionings of
the players on the field; that way, the team could adjust their
formation according to the opponent’s strategy. The soccer
field was divided into grids and a neural network was trained
to map the distance measurements of almost all important
objects on the field to the best position for the player. In
order to refine the result, reinforcement learning was used to
update the weights of the neural network. The resulting team
had a better performance than the teams with fixed player
positions.

The most similar work to our approach was published
by Riekki and Röning [13]. They used a goal-oriented and
behavior-based architecture, called theSambacontrol archi-
tecture, which is inspired by Brooks’subsumption architec-
ture [14], [15], where they propose a mode of executing tasks
by modifying and combining primitive reactions. Using this
approach, they could obtain some reasonable team behavior
in both offensive and defensive halves of the field. However,
all these behaviors were manually defined and there was no
machine learning and optimization included in their work.

There have been some significant amount of research done
in allocating tasks to robots in a team given all primitive
actions required to play soccer and some pre-defined roles,
such asattacker, supporter, midfielder, anddefender. Meriçli
proposed some metrics calculated from positions of robots
and ball on the field, and used a subset of these metrics that
are proved to be informative statistically [16], [17]. These
most informative metrics were then used to build a task
allocation algorithm. The algorithms were implemented and
tested on the TeamBots mobile robot simulator environment
[18]. Köse et al. [19], [20] presented a task allocation algo-
rithm based on free-market approach, in which the players



evaluate their fitnesses to each role by calculating a cost
function for accomplishing the main task of that role. These
costs are exchanged among teammates and whichever player
offers the lowest cost for a role is assigned to that role. They
used low level potential field denitions proposed by Kaplan
[21] for motion planning. Balchet.al. and Coradeschiet.al.
also proposed some different methods for role assignment
and proper formation tasks [22]–[24].

All of these methods propose solutions for different aspects
of robot soccer in different scales; however, there has not
been any attempt to try to learn soccer as a whole using very
primitive behaviors and extremely small state-action space,
which is the main focus and contribution of this work.

III. B RAITENBERG SOCCER

In his book [2], Valentino Braitenberg describes a number
of wondrous vehicles that behave in unexpectedly com-
plex ways based on the use of a few electronic neurons.
Braitenberg gives this as evidence for the “law of uphill
analysis and downhill invention”. What this means is that
it is much more difficult to try to guess internal structure
just from the observation of behavior than it is to create the
structure that results in the behavior. Similar in concept to
Grey Walters’s seminal neural work with his robot tortoises
[25], Braitenberg’s vehicle behavior is more straightforward,
making it somewhat easier to follow, both theoretically and
logically. Therefore, it is easier to implement into real robotic
designs.

The main motivation behind this work is that playing
soccer reasonably well does not require highly complicated
models for each skill, vast state spaces, and long training ses-
sions that last for thousands of episodes; at least for non-robot
soccer players. Hence, we aimed keeping the representation
simple yet informative enough in order to make it possible for
our robot soccer players to learn both how to use individual
skills; such as kicking, dribbling, and avoiding opponents
efficiently and how to improve collaborative skills; such as
proper positioning and passing. If we take a closer look at
the general structures of these skills, we see that they all have
two primitive behaviors in common:moving towards a point
and moving away from a point. These behaviors can easily
be implemented as the behaviors of Braitenberg vehicles;
such as “aggression” and “fear”, and the implementation can
be approximated using force fields as shown in Figure 1
[21]. Force fields are one of the simplest and most effective
controllers for mobile robots. A force field is basically a
combination of some attractive and repulsive forces on an
object. For example, being the primary object of interest on
the field, the ball has an attractive force field on it whereas
an obstacle on the field, such as an opponent defender, has
a repulsive force field on it. In Figure 1, an attractive force
field is placed on the ball (represented as an orange circle in
the middle) as well as a circular field that makes it possible

Fig. 1. Force fields used as the underlying motion mechanism.

for the robot to end up facing towards a point when it meets
the ball. Other robots (represented as a red circle) and the
border lines have repulsive force fields on them in order to
keep our robot away from them and inside the border lines,
respectively.

The main goal in a soccer game is to score more goals than
the opponent team, which can be achieved by carrying and/or
pushing the ball towards the opponent goal, specifically
behind the goal line. Making an analogy from the nature, the
behavior that we observe in ants while they are carrying food
to their nests is a perfect biological inspiration for modeling
this task. If we treat the robots as ants, the ball as food,
and the opponent goal as their nests, then what we actually
ask our “soccer playing ants” to do is to carry the food to
their nests as quickly and easily as possible while avoiding
all the obstacles that they sense on the way. In fact, all
of the “complex” behaviors required for achieving this task
emerge from combinations of the two primitive behaviors that
we have mentioned previously,moving towards a pointand
moving away from a point, which in some sense very similar
to thesubsumption architecture[15]. If the robot

• moves towardsthe balland moves towardsthe opponent
goal, attacker behavior is observed

• moves towardsthe ball and moves towardsthe home
goal, defender behavior is observed

• moves away fromthe ball and moves towardsthe
opponent goal,supporter behavior is observed

• moves towardsthe balland moves towardsa teammate,
passing behavior is observed.

Figure 2 illustrates those behaviors. Passing and attacking
have similar structures; moving towards a point while aiming
towards another point, and when the point falls within a cer-
tain angle range, kicking the ball towards the point. Defense
and support behaviors are different in the sense that they are
implemented as trying to move towards / away from two
different points at the same time, hence ending up at where
the vector sum of those directions point. The intermediate
lines with terminal dots in Figure 2 indicate the points where
the robot ends up staying while performing defender and
supporter behaviors. Also, an implementation detail should
be given in order to understand how long distance kicks and



Fig. 2. Combination of the primitive behaviorsmoving towards a point
andmoving away from a pointto create more “complex” behaviors, such as
offense (red), defense (dark blue), support (green), and passing (blue).

Fig. 3. Portion of the quantized robot soccer field.

passes work; the robots kick the ball as soon as the point that
they aim falls within a certain orientation threshold.

Now the problem reduces to determining when to choose
which action. Since soccer environment is continuous, the
first step to take is to discretize the environment by dividing
the field into grids. Quantization makes the representation
of the positions of each robot and the ball much simpler,
that is just a single number representing thecell ID. Another
important factor that affects the action selection mechanism
is the state of the immediate surrounding of the ball, which
is represented as a singledominance value. Dominance in
a cell is calculated as the difference between the number
of teammates (including the robot itself) and the number of
opponent robots. Dominance value is set as2 if our robots
are dominant,1 if the opponents are dominant, and0 if the
number of robots from the two teams is the same. Figure 3
illustrates the discretization of the field and the dominance in
a given cell. Blue-red robots belong to our team and yellow-
white ones are the opponents. The ball is in the light-green
colored cell and the dominance value in that cell is2.

Another important environmental information for the
robots is their distance to the ball; whether they are the
closest, a teammate is the closest, or an opponent player is
the closest. Similar to the dominance value, this information
is also represented as three discrete values.

In a given state, the robot can perform one of the five
different actions that are observed when the robots combine

different primitive behaviors, namely attacking the opponent
goal, supporting the attacker, defending the home goal,
passing to the closest teammate, and passing to the teammate
that is closest to the opponent goal. It is more convenient
and easier to implement to assign probability values to these
actions in a given state and pick the one that will result in the
highest reward; that is the one with the highest probability
value. Therefore, the state-action mapping representation is

ballCell, closest, dominance, action→ probability

Initially the probability values are all equal and0.2, which
means that all five actions have equal chances to be selected
in all states. Adjustment of those probability values is done
through learning, in particularreinforcement learning. Specif-
ically, theQ(λ) [3] algorithm is used in this work. After the
Q values are computed, they are normalized so that they
could be treated as probability values and the sum of the
probabilities of possible individual actions in a given state
would be1.0.

Reward, that is an increase in the probability of selecting
an action, or punishment, that is a decrease in the probability
of selecting an action is given in two different ways as being
immediate or delayed. Immediate rewards and punishments
are given to the robot based on whether the last action it
performed resulted in pushing the ball closer to the opponent
goal, or one of the teammates or the robot itself touching the
ball again in the next step. A delayed reward or punishment is
given after a goal is scored and the lastN actions are affected
from this assignment inversely proportional to their temporal
distances from the last action since these series of actions
resulted in scoring or receiving a goal. The exploration /
exploitation rate is decreased throughout the game; therefore,
initially the robots tend to explore the state-action space.
However, after some time, they start exploiting the actions
that they decided are more beneficial to perform in a given
state.

Since it is almost impossible for any two robots on the
field to have the exact same distance to the ball, most of
the time each robot in the team has a different state-action
representation tuple for the same state. Therefore, at each
time step, each robot “experiences” a different situation,
makes a decision based on what it observes, and modifies
a different part of the probability table. This experience table
is shared among the teammates; that is, the robots implicitly
share their experiences. What actually happens is that they
communicate through changing the environment, which is
very similar to what swarms do in nature (stigmergy). That
eliminates the need for an explicit communication protocol,
simplifying the model even further.

In some situations proper positioning may be more bene-
ficial than chasing the ball. One of the preferred positioning
styles is the diamond formation in which one of the robots



Fig. 4. Diamond formation as a result of emergent assignmentof the
attacker, supporter, and defender behaviors.

attack the opponent goal, two robots support the attacker
from two sides, and one robot stays back to defend the own
goal. Figure 4 shows the diamond formation that emerged as
the assignment of the positioning related and chasing related
roles among the robots.

One of the main advantages of the approach that we
propose is that since the state-action space is very small
it is possible to keep updating the experience table while
playing against a team, that is learning to deal with the
opponent team on the fly. That also provides observation of
reasonable behaviors very quickly without training the team
for thousands of episodes.

IV. EXPERIMENTS

The experiments were run on the TeamBots simulation
environment [18], which can be thought of as a simulation
of the FIRA - MiroSot league [26], and an approximation of
the RoboCup Small Size League [27]. A team of five players
was considered and only the non-goalie players were trained.
The goalie ran a very simple positioning code which placed
the robot on the intersection of line that connects the ball
and the center of the goal box and the goal line.

There are five different hyper-parameters that affect the
course of the game which are the constant determining the
exploration / exploitation rateK, the dimensions of the grid
GD, the length of the state-action historyHS, and the values
of immediateI and delayedD rewards / punishments.

An incremental method is followed for training. Initially
the team is trained on an empty field to promote the actions
that carry the ball towards the opponent goal without any
intervention. After a relatively short training period, the team
was forced to play against theNullTeamwhich has stationary
robots on the field. With the presence of opponent robots
on the field the team learned to deal with the opponent
robots and reach the opponent goal without colliding with
the opponents and losing the possession of the ball. In order
to let the team develop some defensive skills, the team was
trained against theBrianTeam team, the codes of which
come with the TeamBots simulator. Finally, the robots were
trained against a strong team namedMarketTeam, which

Fig. 5. Results of the games played(a) on the empty field, then against
(b) NullTeam, (c) BrianTeam, and (d) MarketTeam.

uses a market-driven role allocation algorithm and a similar
potential field approach in which the coefficients of the field
forces are trained by using Genetic Algorithms (GA) [19],
[20]. Being a strong and offensive team,MarketTeamforced
our team to learn some defensive behavior. At the end of
each game, thescore-rate, which is defined in terms of the
difference between the own score and the opponent score is
used as an evaluation criterion (Equation 1).

ScoreRate =

8

>

>

>

<

>

>

>

:

ownScore
(ownScore−oppScore)
(ownScore+oppScore)

if ownScore > oppScore,

oppScore
(ownScore−oppScore)
(ownScore+oppScore)

if ownScore < oppScore,

0 otherwise.
(1)

After playing against three teams with differentK, GD,
HS, I, and D values, initial results showed that keeping
K in the range of0.5 < K < 1.0 works better since it
keeps the exploration / exploitation rate balanced. A slightly
bigger history size (HS = 10) helped making long term
plans by learning a path from a specific position towards
the one that leads to an own score. Keeping grid size not
as big (GD = 3 × 3 = 9) helped the robots have a more
compact representation of different portions of the field.
Since these three coefficients with these specific values led
to more own scores, which is the desired result, we kept
them unchanged and trained the team incremantally using
these values. Results of the 2-minute games played on the
empty field, againstNullTeam, BrianTeam, andMarketTeam
are provided in Figure 5.300 games were played in each
configuration, and the average score-rates after every10th

game were recorded. The blue dots represent the score-rate
whereas the red curves represent the general tendency, which
is towards bigger score-rates as a sign of scoring more goals
and receiving less goals.

As seen in the results, there is a general tendency to-



wards scoring more goals (represented as the red curves)
while preventing the opponent from scoring. Very powerful
attacking strategy ofMarketTeamteam prevented our team
from scoring many goals; that is why the score rate is mostly
negative or zero until the last couple of games in Figure 5 (d).
However, those results indicate that our team learned how to
defend its goal against this team, since the opponents started
scoring less towards the last games. Also when the team starts
the next game with some experience from the past games, the
score rate tends to be very low if negative, and reasonably
high if positive, which indicates that the knowledge from the
past games is transferred to the current game.

V. CONCLUSIONS& FUTURE WORK

We proposed a biologically inspired approach based on
the principles Braitenberg vehicles for creating a team of
soccer playing robots that use combinations of very primitive
skills to implement “complex” behaviors such as attacking
the opponent goal, supporting the attacker, defending the
own goal, and passing. We usedQ(λ) learning to learn the
mapping between states, which are represented with only 3
state variables, and one of five possible actions.

The experiments show that our team was able to learn
how to score goals efficiently and how to defend their
own goal, converging to one of the optimal formations,
which is a diamond-shaped formation at the end of a short
training period, which started on an empty field and ended
after playing against a very strong team. The algorithm is
implemented in TeamBots simulation environment, in which
differential drive robots are used.

The three main contributions of this paper are as follows.

• It demonstrates that a group of robots can indeed learn
how to play soccer as a team using combinations of very
primitive behaviors,

• It proves that reasonable results can be obtained without
complex state representations and the amount of time
necessary for training can be decreased significantly by
using a very small state space,

• It proposes a very simple yet effective mechanism that
makes learning and adaptation on the fly during a game
possible.

This approach can be extended to more than five players
by simply defining more targets on the field that the robots
can move towards or away from; for instance, the opponent
players can be marked in that way. Tests on scalability of
this approach are left as future work.
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