
An Experience-Based Approach to Mobile Push-Manipulation
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Abstract
We present an experience-based push-
manipulation method, where the mobile
robot learns through experimentation how the
pushable real world objects with complex 3D
structures move in response to various pushing
actions. These experimentally acquired models
are then used as building blocks for constructing
achievable push plans via a Rapidly-exploring
Random Trees variant planning algorithm we
contribute. We test our method in a realistic 3D
simulation environment and demonstrate safe
and successful transportation and placement of a
variety of passively mobile pushable objects.

1. Introduction
The objective of push-manipulation is to come up with and
execute a sequence of pushing actions to maneuver an ob-
ject incapable of moving by itself from an initial config-
uration to a goal configuration. In this study, we expect
our omni-directional mobile robot CoBot (Rosenthal et al.,
2010), which is not equipped with a manipulator arm, to
push-manipulate a set of passive mobile objects (Figure 1)
in such a way to transport them to their desired poses while
avoiding collisions in the task environment cluttered with
obstacles. However, these objects have complex 3D struc-
tures and they move on freely-rolling caster wheels which
further contribute to their motion uncertainty, making it
non-trivial to write down mathematical models that would
capture the complex interaction and movement properties
of such objects.

As a potential solution to this problem, we develop an algo-
rithm that does not require any explicit mathematical mod-
els for neither the objects nor the robot. Instead, following
a case-based planning approach (Veloso, 1994), the robot
builds experimental models by memorizing the observed
effects of its pushing moves on various passive mobile ob-

Figure 1. Realistically simulated passive mobile objects moving
on freely-rolling caster wheels and our omni-directional mobile
robot used as the pusher.

jects. These experimental models are then used as build-
ing blocks for generating push-manipulation plans via a
Rapidly-exploring Random Trees (RRT) variant planning
algorithm we contribute (Meriçli et al., 2012; Meriçli et al.,
2013) and executing them while monitoring execution to
trigger re-planning when necessary.

2. Experience-based Push-Manipulation
The robot builds the object-specific experimental models
through either self-exploration or demonstration by push-
ing the objects from various directions for varying dura-
tions and observing how they move in response to these
pushes. These experiences are represented as sequences
of pose-action pairs for the robot and the corresponding
poses for the object of interest, representing their active and
passive trajectories, respectively. These trajectories are de-
fined with respect to various frames of reference. A static
global frame of reference, ϕG, is attached to the environ-
ment. We also attach separate frames of reference to the
robot and the object of interest, denoted as ϕR and ϕO,
respectively, to define their poses within ϕG. In addition,
we define an auxiliary frame of reference, ϕS , to indicate
the last stationary pose of the object before it starts being
pushed. Figure 2(a) illustrates these reference frames.
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Figure 2. (a) Reference frames used during sequence recording
and replay depicted before (t = ts) and after (t = te) a push. (b)
Visualization of the robot trajectory and the corresponding object
trajectory components of 7 different sequences.

Let ℘R be ϕR w.r.t. ϕO, and ℘O be ϕO w.r.t. ϕS , both of
which are denoted as 〈x, y, θ〉. Invariance toϕO is achieved
by recording ℘R together with the motion command at that
moment and the corresponding ℘O. Therefore, a sequence
Si of length n takes the form

Si : ((℘R0
, a0, ℘O0

), . . . , (℘Rn−1
, an−1, ℘On−1

))

where aj is the action associated with ℘Rj , denoted as
〈vx, vy, vθ〉 indicating the omni-directional motion com-
mand composed of the translational and rotational veloc-
ities of the robot. Figure 2(b) shows the visualization of
the robot and object trajectories within the sequences.

Each sequence is associated with a distribution that rep-
resents the uncertainty in the observed final pose of the
relevant object after a push. Each of the newly learned
sequences Snewi are replayed several times and the corre-
sponding distribution parameters are incrementally updated
according to Eq. (1) and Eq. (2), assuming that the observed
final object poses will be normally distributed.
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In these equations, ℘̄Of
t

denotes the mean of the observed
final object pose after the tth trial for a specific Snewi , and
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O
f
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is the corresponding covariance, which in our case

is a 3 × 3 matrix. This compact representation eliminates
the need for storing all of the previously observed individ-
ual poses. Figure 2(b) depicts the pose uncertainty as red
ellipses around the final projected object poses.

Having acquired a set of sequences for each object, the
robot needs to construct and execute push plans to achieve
its task. We contribute the Exp-RRT algorithm, the
experience-based variant of the Rapidly-exploring Random
Trees (RRT) (LaValle, 1998; LaValle, 2006), where the
learned trajectories are used as building blocks for extend-
ing the search tree instead of using extensions along the
straight line connecting the random sample to the closest
node on the tree. At each iteration, we sample a random
object pose with probability p or use the goal as the sample
with probability 1−p. The “closest” node of the tree to the
new sample is the one that gives the maximum similarity
value according to the similarity function defined in Eq. 3,

sim(p1, p2) =
dmax

dist(p1, p2)
cos(p1.θ − p2.θ) (3)

where dmax is the maximum possible distance that can
be obtained in the task environment and dist(p1, p2) is
the Euclidean distance between the locations of the poses.
Therefore, the closer the locations of the two poses and
the smaller the angular difference between their orienta-
tions, the more similar they are. After the closest node
to the sample is determined, imagining the object to be
placed on the pose of the closest node, this time the fi-
nal expected poses of the sequences originating from that
imaginary pose are checked against the sample according
the same similarity function defined in Eq. 3. The tree is
extended towards the sample by using the final projected
object pose of the sequence that gives the highest similar-
ity value and is collision-free for both the object and the
robot. This process is repeated until the pose of the newly
added node falls within predefined distance and orientation
difference limits to the goal pose. Figure 3 illustrates two
steps of the Exp-RRT algorithm, assuming that the goal it-
self is used as the sample to be reached. Object trajectories
within the sequences are illustrated as dashed curves, the
projected object poses are depicted as little squares, and the
ones that are most similar to the sample are highlighted.

Figure 3. Illustration of the Exp-RRT construction process.

The motion uncertainties of the objects are incorporated
into the planning process by checking for collisions for
each of the 7 sigma points (i.e. the extremes) of the as-
sociated distributions rather than a single pose to ensure
achievability.



3. Experimental Evaluation
We performed the majority of our experiments in the We-
bots mobile robot simulation environment (Michel, 2004),
which enabled us to realistically simulate the pushable real
world objects moving on freely-rolling caster wheels. The
final placement of an object was considered successful if
the distance of the object to the desired goal was below
0.2m and the orientation difference was below π/9 radi-
ans. Considering the dimensions of the objects our robot is
manipulating, these constraints are quite tight. The maxi-
mum number of Exp-RRT nodes allowed was 33750 as we
require 0.2m distance accuracy with at most +/− π/9 ra-
dians orientation difference in a 15m× 15m environment.
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Figure 4. Generated plans (shown as blue ghost figures over the
pink path) using the past observed and memorized trajectories for
a chair ((a) and (b)) and a food tray ((c) and (d)) in very challeng-
ing environments cluttered with obstacles and other objects.

Separate sets of sequences are learned and stored for each
of our pushable objects. Figure 4 demonstrates the gen-
erated achievable and collision-free plans for two of such
objects, namely a chair and a food tray, by using their
corresponding sequences as building blocks. As it can be
seen from these screen shots, our experiment environment
is much bigger and much more cluttered compared to many
of the problem setups used in similar studies in the litera-
ture. Considering the long distances the robot is expected
to navigate the object for, it is inevitable to have the ob-
ject digress from its foreseen path during plan execution.
If the digression is significant, then the robot re-plans to
guarantee the safe transportation of the object. In the par-
ticular instances shown in Figure 4, the robot had to re-plan
for 4.5 times on the average. It must be noted that we did
not provide any explicit mathematical models or make use
of physics engines for neither the pushable objects nor the
robot. Our contributed method is able to handle any push-
able object after the robot experiments with it to learn how
it moves in response to various pushes.

4. Conclusion and Future Work
We develop an experience-based mobile push-
manipulation approach that does not require any explicit
mathematical models or the utilization of a physics engine.
Our mobile robot simply experiments with pushable
complex 3D real world objects that move on freely-rolling
caster wheels to observe and memorize their motion
characteristics together with the associated uncertainties
in response to various pushing actions. It then uses this
incrementally built experience as the building blocks of a
sampling-based planner we contribute to construct push
plans that are safe and achievable. Our extensive exper-
iments demonstrate safe transportation and successful
placement of several pushable objects to their desired final
poses in a large and cluttered environment in simulation.

As future work we consider extensive testing and detailed
experimentation in the physical setup, performing subset
selection among the reliable sequences to find the mini-
mum set of useful ones, expanding the skill set of the robot
by accumulating new experiences over time, and transfer-
ring learned manipulation sequences among objects with
similar properties.
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Meriçli, T., Veloso, M., & Akın, H. L. (2013). Achievable
Push-Manipulation for Complex Passive Mobile Objects
using Past Experience. 12th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS
2013). Saint Paul, Minnesota, USA.

Michel, O. (2004). Webots: Professional Mobile Robot
Simulation. Journal of Advanced Robotics Systems, 1,
39–42.

Rosenthal, S., Biswas, J., & Veloso, M. (2010). An Effec-
tive Personal Mobile Robot Agent Through Symbiotic
Human-Robot Interaction. Proc. of AAMAS.

Veloso, M. M. (1994). Planning and Learning by Analogi-
cal Reasoning. Springer Verlag.


