
Achievable Push-Manipulation for Complex Passive Mobile
Objects using Past Experience

Tekin Meriçli
Department of Computer

Engineering
Boğaziçi University

Istanbul, Turkey
tekin.mericli@boun.edu.tr

Manuela Veloso
Computer Science

Department
Carnegie Mellon University

Pittsburgh, PA, USA
veloso@cmu.edu

H. Levent Akın
Department of Computer

Engineering
Boğaziçi University

Istanbul, Turkey
akin@boun.edu.tr

ABSTRACT
Majority of the methods proposed for the problem of push
planning and manipulation deal with objects that have quasi-
static properties and primitive geometric shapes, yet they
usually use complex physics modeling for the manipulated
object as well as the manipulator. Our proposed approach
is an experience-based one, where the mobile robot experi-
ments with pushable complex real world objects to observe
and memorize their motion characteristics together with the
associated uncertainties in response to various pushing ac-
tions. This incrementally built experience is then used for
constructing push plans based solely on the objects’ pre-
dicted future trajectories without any need for object-specific
physics or contact modeling. We modify the RRT algorithm
in such a way to use the recalled robot and object trajecto-
ries as building blocks to generate achievable and collision-
free push plans that reliably transport the object to a desired
3 DoF pose. We test our method in a realistic 3D simulation
environment as well as in a physical setup, where a variety of
pushable objects with freely rolling caster wheels need to be
navigated among obstacles to reach their desired final poses.
Our experiments demonstrate safe transportation and suc-
cessful placement of the objects.

1. INTRODUCTION
There are many ways to perform robotic manipulation,

which are determined by the requirements of the task and
the constraints imposed by the physical properties of both
the object and the robot. Prehensile manipulation is the
most straightforward one, where the object is first grasped
and then carried to the desired destination. On the other
hand, it may be possible, or even necessary to relocate the
object without grasping it first in cases where the object is
too large or heavy, the robot is not equipped with a ma-
nipulator arm, or the utilization of some properties of the
object makes its transportation more efficient and conve-
nient that way. This type of manipulation is referred to as
non-prehensile manipulation [1], examples of which include
sliding, rolling, throwing, and pushing.

This paper focuses on the problem of push manipulation,

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Realistically simulated passive mobile ob-
jects on freely-rolling caster wheels and our omni-
directional mobile robot used as the pusher. The
complex 3D shapes and the different physical char-
acteristics of these objects and the robot makes it
infeasible to try to capture their sophisticated inter-
actions and the resulting motions by using explicit
mathematical models.

the objective of which is to come up with and execute a
sequence of pushing actions to maneuver an object inca-
pable of moving by itself from an initial configuration to a
goal configuration. Our problem setup consists of an omni-
directional mobile robot without a manipulator arm, and a
set of passive mobile objects that are scattered in the envi-
ronment cluttered with obstacles. The expectation from the
robot is for it to push-manipulate these objects in such a
way to transport them to their desired poses while avoiding
collisions. What makes our problem particularly challeng-
ing is that, in our experiments, we use real world objects
with freely rolling caster wheels and their realistically simu-
lated models. Caster wheels make the objects keep moving
for some time after the pushing is ceased and they intro-
duce some uncertainty into the objects’ motions. Objects
with this kind of uncontrolled motion properties are inher-
ently more difficult to manipulate compared to objects slid-
ing quasi-statically on surfaces with high friction.

We would like our robot to be able to manipulate a variety
of these kinds of objects with different physical character-
istics. Some of these objects are illustrated in Fig. 1. Our
omni-directional mobile robot shown in front of the objects
has a basket sticking out. Even though this basket makes
contact with the objects most of the time during pushing,
due to the robot’s and the objects’ complex 3D shapes, some
other parts of the robot may also be involved in the con-
tact based on the pushing direction. Therefore, trying to

model potential contacts becomes complex and infeasible.
Under these circumstances, the robot needs a way to gener-
ate achievable, collision-free plans and execute them reliably
as it is supposed to perform push-manipulation in a large
environment cluttered with several objects and obstacles.

As a potential solution to these problems, we contribute
an algorithm that does not require any explicit mathemat-
ical models for neither the objects nor the robot. Instead,
the observed effects of previously experimented and mem-
orized pushing moves, represented as sequences of state-
action pairs, are utilized to generate push plans for manip-
ulating passive mobile objects. A sampling-based planning
algorithm is taken as basis and modified in such a way to
construct complete plans by using the safe and achievable
object trajectories as building blocks. The constructed plan
is then executed by letting the robot replay the pushing
motions of the corresponding sequences one after another.
Due to the noise in actuation during plan execution and
imprecision in the repeatability of the past observed object
trajectories, the object may diverge from its expected pose
along the foreseen path. If the divergence is significant, then
a new plan is constructed to prevent potential collisions of
the object and the robot with the obstacles in the environ-
ment. Using this method yields more successful executions
compared to planning that does not take the achievability
of the plan into account from both the robot’s and the ob-
ject’s perspectives. Also, the robot more consistently starts
generating plans that require less number of pushes as the
variety of the memorized sequences increases.

2. RELATED WORK
Pushing enables complex manipulation tasks to be per-

formed with simple mechanics in cases where the object is
too bulky or heavy to lift, or the robot simply lacks a manip-
ulator arm. As a result of being one of the most interesting
methods used within the non-prehensile manipulation do-
main [1, 2], push-manipulation has attracted several robotics
researchers. An early work by Salganicoff et al. [3] presents
a very simple, one nearest-neighbor based approximation
method for the forward model of an object being pushed
from a single rotational contact point in an obstacle-free en-
vironment by controlling only one degree of freedom. Agar-
wal et al. [4] propose an algorithm for computing a contact-
preserving push plan for a point-sized pusher and a disk-
shaped object using discrete angles at which the pusher can
push the object and a finite number of potential intermedi-
ate positions for the object. They assume that their pusher
can place itself at any position around the object since it
does not occupy any space; however, this approach cannot
be used when real robots are considered as they have non-
zero dimensions that can collide with the obstacles in the
environment. Nieuwenhuisen et al. [5, 6] utilize compliance
of the manipulated object against the obstacles rather than
trying to avoid them, and make use of the obstacles with lin-
ear surfaces in the environment to guide the object’s motion
by allowing the object to slide along the boundaries. Berg
and Gerrits [7] computationally improve this approach and
present both a contact preserving and an unrestricted push
planning method in which the the pusher can occasionally let
go of the object. Similar to the potential field based motion
planners [8], Igarashi et al. [9] propose a method that com-
putes dipole-like vector fields around the object that guide
the motion of the robot to get behind the object and push it

towards the target. Relatively slow robot motions and high
friction for the objects are assumed, and robots with circular
bumpers are used to push circular and rectangular objects
of various sizes in single and multi-robot scenarios. As a
promising step towards handling objects with more complex
shapes, Lau et al. [10] achieve pushing of irregular-shaped
objects with a circular robot by collecting hundreds of sam-
ples on how the object moves when pushed from different
points in different directions, and using a non-parametric
regression method to build the corresponding mapping, sim-
ilar to the approach of Walker and Salisbury [11]. Their ap-
proach is similar to ours in the sense that they also utilize
the observations of the object’s motion in response to vari-
ous pushing actions. Even though they use irregular-shaped
objects in their experiments, their objects have quasi-static
properties and they ignore the final orientation, which fur-
ther simplifies the problem. Zito et al. [12] present an algo-
rithm that combines a global sampling-based planner with a
local randomized push planner to explore various configura-
tions of the manipulated object and come up with a series of
manipulator actions that will move the object to the inter-
mediate global plan states. Their experiment setup consists
of a simulated model of a table top robot manipulator with
a single rigid spherical fingertip and an L-shaped object (a
polyflap) to be manipulated. The setup is obstacle-free and
the state space is limited to the robot arm’s reach, which
is relatively small, as they are using a stationary manipula-
tor. The randomized local planner utilizes a realistic physics
engine to predict the object’s pose after a certain pushing
action, which requires explicit object modeling. Kopicki et
al. [13] uses the same problem setup and present an algo-
rithm for learning through interaction the behavior of the
manipulated object that moves quasi-statically in response
to various pushes. However, the learned object behavior is
not used for push planning in their work. Another recent
study by Dogar and Srinivasa [14] uses push-manipulation
in a tabletop manipulation scenario as a way to reduce un-
certainty prior to grasping by utilizing the funneling effect
of pushing.

According to our survey of the literature, the most com-
mon scenario seems to be pushing of objects with primi-
tive geometric shapes using circular or point-sized robots, or
rigid fingertips on a surface with relatively high friction that
makes the object stop immediately when the pushing motion
is ceased. Even then relatively complex mathematical mod-
els are used for contact modeling and motion estimation, or
physics engines of simulators are utilized for these purposes.
Our approach differs from many of these proposed ones in
the sense that

• we deal with complex 3D real world objects that may
contact the robot on several points,

• the manipulated objects are not quasi-static; they con-
tinue moving freely for a while after the push, and their
caster wheels contribute to their motion uncertainty,

• mobile manipulation is performed in an environment
cluttered with obstacles, requiring construction of safe
and achievable plans,

• no explicit mathematical model is constructed or learn-
ing based mapping is built; only the pushing motions
performed in the past and their corresponding observed

effects along with the associated variances are used for
planning and execution.

3. PLANNING THE FUTURE USING THE
PAST

Our algorithm consists of the following components:

• A set of sequences composed of motions for pushing an
object from various directions for varying durations,
and the object’s corresponding observed behavior

• A generative planner that makes use of the past push-
ing experiences stored as sequences to construct achiev-
able and collision-free push plans

• An execution monitoring module for the push plans to
trigger re-planning when there is a significant discrep-
ancy between the expected and the actual outcomes

We elaborate on each of these components in the rest of
this section.

3.1 Sequences
It is highly inefficient to try to repeatedly generate from

scratch the plans that will achieve the pushing moves to
transform the state of the manipulated object to the imme-
diately desired state. Therefore, we make the robot mem-
orize a small number of its pushing experiences from vari-
ous directions as it interacts with the object by itself or we
joystick it to demonstrate how to perform them. These ex-
periences are represented as sequences of state-action pairs
for the robot and the corresponding trajectory followed by
the object. Fig. 2 illustrates various frames of reference used
for recording and executing the sequences, and the visual-
ization of the robot and object trajectories within the stored
sequences. Invariance to the object’s global pose (ϕO w.r.t.
ϕG) is achieved by recording the pose (i.e. the state) of
the robot relative to the object (ϕR w.r.t. ϕO) together
with the corresponding motion commands, and the trajec-
tory followed by the object relative to its stationary pose
right before it starts being pushed (ϕO w.r.t. ϕS). There-
fore, a sequence takes the form

(℘R1, a1, ℘O1), (℘R2, a2, ℘O2), ..., (℘Rn, an, ℘On)

where ℘Ri is the pose of the robot relative to the object
(ϕR w.r.t. ϕO) denoted as 〈x, y, θ〉, ai is the action associ-
ated with ℘Ri, denoted as 〈vx, vy, vθ〉 indicating the omni-
directional motion command composed of the translational
and rotational velocities of the robot, and ℘Oi is the pose of
the object relative to its last stationary pose before it starts
moving (ϕO w.r.t. ϕS), also denoted as 〈x, y, θ〉.

The sequences are recorded at each step of the robot’s
perception cycle, in our case at a frequency of 30Hz. As the
number and the length of the recorded sequences increase,
such high recording rates may cause problems in terms of
efficient processing and scalability. To address this issue,
we use a sparsified sequence representation, and only check
the keyframes defined at every kth frame of the sequence
for faster collision detection along the trajectories both for
the robot and the object. The value of k can be adjusted
according to the dimensions of the objects being pushed;
that is, if the objects are too small, then it is better to check
for collisions more frequently along the trajectories.

(a) (b)

Figure 2: (a) Various reference frames used dur-
ing sequence recording and replay depicted before
(t = ts) and after (t = te) a push. (b) Visualization
that corresponds to the scene shown in the upper
left corner of the image. The robot is represented
as a blue cylinder and the chair is represented as
a red cube. Yellow arrows indicate pose orienta-
tions, the smaller blue cylinders represent the initial
pose of the robot relative to the object before the
push starts, and the green cubes represent the ob-
served mean final poses of the manipulated object
after the corresponding push. The robot trajectory
(indicated with blue lines) and the object trajectory
(indicated with green lines) that belong to the same
sequence are depicted with the same ID value drawn
on the initial robot pose and final object pose. Fi-
nal object pose uncertainty is depicted with the red
ellipses drawn around the means (this figure is best
viewed in color).

3.2 Learning How Objects Behave
Humans learn and further sharpen their manipulation and

corresponding prediction-based planning skills through in-
teractions with their environment. Ideally, robots should
also learn from their experiences instead of being provided
with detailed mathematical models of each and every object
that they are expected to interact with, and physics engines
to compute the outcomes of these interactions. This ap-
proach quickly becomes infeasible with the increasing num-
ber and variety of objects that the robot is expected to
be able to handle. Also, it is almost impossible to pro-
vide object-specific mathematical models for the real world
objects with complex physical properties and motion char-
acteristics that we want the robot to push-manipulate. For
these reasons, we make our robot interact with the pushable
objects to observe how they behave in response to various
pushing actions for future use in the planning process.

There are two challenges to be addressed in our problem.

1. The first challenge is the uncontrolled motion of the
object after the push is ceased. As a result of moving
on freely-rolling caster wheels, the pushable objects
used in our experiments do not stop immediately af-
ter the robot stops pushing, and the exact poses of
the objects after they come to rest vary between the
pushing attempts from the same direction for the same

duration.

2. The second challenge is the effect of the initial, station-
ary orientations of the object’s wheels on the trajec-
tory that the object follows when being pushed. The
wheels do not immediately align with the pushing di-
rection after the push starts, which introduces addi-
tional uncertainty to the motion of the object and its
final observed pose.

Since these two problems are partially related, we try to
address them simultaneously by having the robot build its
experience incrementally over several trials instead of relying
on a single observation.

When the robot is given a new object to be manipu-
lated, it picks m random push initiation poses immediately
around the object and corresponding random pushing du-
rations ranging from 1 to 3 seconds, which we name push
configurations, ς = {ς1, . . . , ςm}. Informed experience in
addition to purely random experimentation can be trans-
ferred to the robot by providing some of these configura-
tions through demonstration via joysticking it. As distinct
pushes cause different final wheel orientations, the robot al-
ternates between ςi in order to make sure that it experiments
with each ςi for varying initial caster wheel orientations. We
ensure the coverage of all ςi by picking m to be a prime
number and iterating over ς by using a set of increments
ι = {ι0 = 1, . . . , ιj = m − 1} in a way similar to a hash
collision resolution strategy. Starting with ι0, the robot al-
ternates between ςi using i = ((i+ ιj) mod m) until each of
them are covered. Then it picks another increment ιj with
j = ((j + 1) mod (m − 1)) and continues its experimen-
tation. This process is repeated until the robot collects n
samples from each of the m push configurations. The first
trials for each of the random push configurations are saved
as new sequences, and the additional trials are used to re-
play these sequences to update their statistical parameters.
That is, the robot, in a sense, tests how reliably and con-
sistently it can reproduce the expected observation when a
particular pushing motion is replayed.

Assuming that the observed final object poses will be nor-
mally distributed, the robot tries to capture the final object
pose uncertainties by incrementally updating the parame-
ters of these distributions after observing the outcome of
each of the n trials of for each ςi as shown in Eq. (1) and
Eq. (2).

℘̄On = ℘̄On−1 +
℘On − ℘̄On−1

n− 1
(1)

Σ℘On
=

(n− 2)Σ℘On−1
+ (℘On − ℘̄On)(℘On − ℘̄On−1)T

n− 1
(2)

In these equations, ℘̄On denotes the mean of the observed
object pose after the nth trial for a specific ςi, and Σ℘On

is
the corresponding covariance, which in our case is a 3 × 3
matrix. This compact representation eliminates the need
for storing all of the previously observed individual poses.
Fig. 2(b) depicts the pose uncertainty as red ellipses around
the final projected object poses.

As previously mentioned, these distributions are good in-
dicators of how reliable and consistent individual push se-
quences are. Since the object moves in an uncontrolled man-
ner after the pushing is ceased, we do not want it to end up

in an unforeseen pose which may happen to collide with
the obstacles in the environment, or cause the next push-
ing motion to be unachievable due to the obstruction of the
corresponding initial robot pose. Therefore, we eliminate
the sequences with variances exceeding predefined thresh-
olds to improve the safety and reliability of the plans gener-
ated using these sequences, potentially reducing the number
of re-plans needed along the way during plan execution.

In addition to testing how reliably the sequences can be
replayed, we also test how helpful they are in constructing
plans that transport the object to desired placements. After
experiencing a new batch of m sequences, we pick several
random goals in the task environment and let the robot try
to generate plans for each of these goals multiple times using
the available sequences to see how the number of problems
solved and the consistency of the solutions change with the
increasing number and variety of the available sequences.
The results of these tests are presented in Section 4.

3.3 Achievable Plan Generation
Having memorized the motion primitives for the push-

able objects and the corresponding robot motions (i.e. se-
quences), now the robot needs to use them to construct plans
that are collision-free and achievable for both the object and
the robot. Rapidly-exploring Random Trees (RRT) [15, 16]
is one of the most commonly used planning algorithms due
to its simplicity, practicality, and probabilistic completeness
property. Starting from the initial configuration, the RRT
algorithm incrementally builds a tree by uniformly sampling
points from the state space and growing the tree in the di-
rection of the sample by extending the closest node of the
tree towards the sample. It is also possible to bias the tree
growth towards the goal.

Instead of extending the tree towards the sample along
the straight line that connects the closest tree node to the
sample, our proposed planning algorithm uses the previously
observed object trajectories as building blocks for extending
the tree towards the sample. In other words, we build the
tree out of the memorized object trajectories that can be re-
generated by the robot without neither the robot’s nor the
object’s projected poses being in collision with the obstacles.
This is the key point in ensuring achievability from both
the robot’s and the object’s perspective; that is, we can-
not guarantee a straight extension towards the sample to be
achievable with the available sequences, but we can indeed
guarantee that an extension made with the most suitable
non-colliding sequence is achievable as the robot has already
experienced that particular object motion.

At each iteration, we sample a random pose with proba-
bility p or use the goal as the sample with probability 1− p.
The closest node of the tree to the new sample is the one
that gives the maximum similarity value according to the
similarity function defined in Eq. 3,

sim(p1, p2) =
dmax

dist(p1, p2)
cosSim(p̂1, p̂2) (3)

where dmax is the maximum possible distance that can be
obtained in the task environment, dist(p1, p2) is the Eu-
clidean distance between the locations of the poses, and
cosSim(p̂1, p̂2) is the cosine similarity between the two poses
assuming that they are unit vectors coinciding at the origin.
Imagining the object to be on the pose of the closest node,
the final expected poses of the sequences originating from

that pose are checked against the sample according the sim-
ilarity function defined in Eq. 3. The tree is extended to-
wards the sample by using the final projected object pose
of the sequence that gives the highest similarity value and
is collision-free for both the object and the robot. This pro-
cess is repeated until the pose of the newly added node falls
within predefined distance and orientation difference limits
to the goal pose. Fig. 3 illustrates two steps of the tree
construction process.

During tree construction, the achievability of a sequence
is determined by checking each keyframe for collisions along
the robot and object trajectories within the sequence. Specif-
ically, collision check for the final expected object pose is
performed using the associated distribution representing the
pose uncertainty rather than a single pose. For this purpose,
we derive 2L + 1 sigma points representing the extremes
of the distribution from the mean and the covariance using
Eq. (4)-(6), where L is the dimensionality of the state space.
In our case L = 3 as we are dealing with 3 DoF poses.

χ0 = ℘̄O (4)

χi = ℘̄O + ζ(
√

Σ℘On
)i, i = 1, . . . , L (5)

χi = ℘̄O − ζ(
√

Σ℘On
)i, i = L+ 1, . . . , 2L (6)

In these equations, ℘̄O is the mean of the final object poses
observed so far for a particular sequence, (

√
Σ℘On

)i is the

ith column of the matrix-square-root of the covariance ma-
trix Σ℘On

, and ζ is the scalar scaling factor that determines
the spread of the sigma points around ℘̄O. Increasing ζ
increases the conservativeness of the planner. In our ex-
periments, we used ζ = 3. Each of these extreme poses
are checked for collision and the sequence is marked as not
achievable in case any of these poses are in collision with the
objects in the environment and not used for extending the
tree. A separate regular RRT planner is used for planning
a collision free path for the robot that will take it to the
starting pose ℘R1 of the selected pushing sequences during
plan execution.

3.4 Plan Execution and Monitoring
The constructed plan is executed by replaying one after

another the robot trajectories of the chain of sequences that
transports the object to the desired goal. Even though the
plan is constructed by taking into account the uncertainties
in the expected final object poses, the object inevitably di-
gresses from its foreseen path, especially when it needs to be
transported for a long distance. During plan execution, re-
planning may be triggered depending on whether the actual
observed final pose of the object after a push falls within the
tolerance region of the expected pose distribution, which is
computed using Eq. (7)

(℘Oo − ℘̄O)T Σ−1
℘O

(℘Oo − ℘̄O) ≤ χ2
k(p) (7)

where ℘Oo is the observed final pose of the object, ℘̄O is
the expected final pose, Σ℘O is the expected final pose co-
variance, and χ2

k(p) is the quantile function for probability
p of the chi-squared distribution with k degrees of freedom.
In our case k = 3 and we use p = 0.05 to make sure that
the observation is statistically significantly different from the
expectation.

Additionally, in order to relax the planning process a little,
we use a heuristic that dynamically alters the desired final
pose accuracy depending on the distance of the object from
the desired goal. Eq. (8)-(9) define this heuristic

δ = (dist(℘Oo , ℘Og)/dmax) + δmax (8)

ω = π(dist(℘Oo , ℘Og/dmax) + ωmax (9)

where ℘Og is the goal pose, δ and ω are the distance and ori-
entation difference thresholds, respectively, δmax and ωmax

are the maximum allowed final distance and orientation dif-
ference thresholds, respectively. This heuristic helps the
robot to come up with a “rough” plan quickly when the ob-
ject is far away from the goal, and forces it to generate more
accurate plans each time it has to re-plan as the objects gets
closer to the goal.

4. EXPERIMENTAL EVALUATION
We performed majority of our experiments in Webots mo-

bile robot simulation environment [17], which enabled us to
realistically simulate the pushable real world objects and
their motions on freely rolling caster wheels. The final place-
ment of an object was considered successful if the distance of
the object to the desired goal was below 0.2m (i.e. δmax =
0.2 in Eq. 8) and the orientation difference was below π/9
radians (i.e. ωmax = π/9 in Eq. 9). Considering the dimen-
sions of the objects that our robot is manipulating, these
constraints are quite tight.

As briefly mentioned in Section 3.2, the first step in our
experiments is to select the reliable set of sequences to be
used for planning. We do that by eliminating the ones that
cannot be replayed consistently; that is, the ones that have
high variance in the final observed object pose. We deter-
mined the maximum allowed position and orientation vari-
ances to have the same values as δmax and ωmax. After
this elimination, we evaluate the remaining set of sequences
for their proficiency on generating solutions for randomly
picked goals to see how good these solutions are in terms
of the path length (i.e. the lowest the number of pushes re-
quired to transport the object, the better the solution is) and
having consistently similar path lengths. In its evaluation
mode, the robot picks a number of random, collision-free
goals, and starts evaluating the proficiency of the available
sequences by adding them to its library of sequences one
batch at a time, and checking the number of goals that can
be reached consistently with the available sequences. When
it starts reaching more than a certain percentage of the ran-
dom goals, it stops adding new sequences to its library. It
is always possible for the robot to learn some additional se-
quences for an object in case it encounters a problem that
it cannot solve with the currently available set of sequences.
On the other hand, it is also important to keep the num-
ber of stored sequences per object as low as possible due to
storage efficiency concerns.

The batch size used in our experiments was m = 7, and
planning used during the sequence library evaluation process
did not utilize the distance and orientation difference thresh-
old relaxation heuristic that we defined in Equations 8 and 9.
During the evaluation and the actual planning processes, we
consider a planning attempt unsuccessful if the total number
of RRT nodes allowed is exceeded. In our experiments, we
determined the maximum number of RRT nodes to be 33750

Figure 3: (step = i) Initial object (shown in red) and goal (shown in green) configurations are shown. Projected
object poses resulting from pushing the object from various directions are illustrated as little black squares
with attached sequence IDs. The projected object pose that gives the highest similarity value (in this
particular case the sequence with ID 8) to the sample (in this particular case the sample is the goal itself) is
selected (highlighted in green). (step = i+1) The most similar projected object pose to the sample is produced
by the sequence with ID 1. (step = i + 2 . . .) The planning process continues from there on by imagining the
object to be pushed to the most similar projected pose at each iteration.

as we require 0.2m distance accuracy with at most +/−π/9
radians orientation difference in a 15m× 15m environment.

Fig. 4 illustrates the results obtained by following the se-
quence library evaluation procedure for the pushable chair
object and 20 randomly picked collision-free goals. Since the
robot is essentially using a random sampling-based planner,
it tries generating a plan 10 times for each of the 20 goals, so
that that we can analyze the planning performance more re-
liably. Fig. 4(a) shows how the mean path length computed
over all 20 goals changes with the changing number and vari-
ety of the sequences in our library. It can easily be seen from
the figure that the mean path length decreases with the in-
creasing number of available sequences for a while and then
settles around a certain mean path length value. Fig. 4(b)
shows how the standard deviation of the mean path length
changes with the increasing number of available sequences,
which is a measure of how consistent the solutions are in
terms of path length. Similarly, we can see from the figure
that the robot starts finding solutions that have consistently
lower path lengths as the variety of the available sequences
increases. These figures are good indicators for the robot to
understand when it has learned enough variety of sequences
to solve a decent number of push manipulation problems for
a specific object.

A separate set of sequences are learned and stored for each
of our pushable objects. Fig. 5 demonstrates the generated
achievable and collision-free plans for three of those objects,
namely a chair, a food tray, and a pushable serving tray, by
using their corresponding sequences as building blocks. As it
can be seen from these screenshots, our experiment environ-
ment is much bigger and much more cluttered compared to
the problem setups used in many of the related studies sur-
veyed in Section 2. Considering the long distances that the
robot is expected to navigate the object for, it is inevitable
to have the object digress from its foreseen path during plan
execution and for the robot to re-plan to guarantee the safe
transportation of the object. In these three particular in-
stances shown in Fig. 5, the robot had to re-plan for 4.33

7 14 21 28 35 42 49

10

20

30

40

Sequences

M
ea

n
 P

at
h

 L
en

g
th

 (

P
u

sh
es

)
Number of Sequences vs Mean Path Length

(a) Change of the mean path length computed over 20 goals
with the increasing variety of sequences.

7 14 21 28 35 42 49

0

2

4

6

8

10

Sequences

Number of Sequences vs Path Length Standard Deviation

P
at

h
 L

en
g

th
 S

ta
n

d
ar

d
 D

ev
ia

ti
o

n

(b) Change of the standard deviation of the mean path length
computed over 20 goals with the increasing variety of se-
quences.

Figure 4: Evaluation results of the increasing num-
ber of available sequences for the chair object. An
increasing variety of available sequences results in
consistently generated shorter paths.

times on average.
It must be noted that we did not provide any explicit

mathematical models or make use of physics engines for
neither the pushable objects nor the robot. Our proposed

(a) (b) (c)

(d) (e) (f)

Figure 5: Generated plans (shown as blue ghost figures over the pink path) using the past observed and
memorized trajectories for different pushable objects, namely a chair ((a) and (d)), a food tray ((b) and (e)),
and a pushable serving tray ((c) and (f)) in very challenging environments cluttered with obstacles and other
objects. The object of interests are pointed with red arrows and desired goal are pointed with green arrows
in (a), (b), and (c). The robot’s path to reach the next sequence to replay is depicted in blue (this figure is
best viewed in color).

method is able to handle any pushable object after the robot
experiments with them to learn how they move in response
to various pushes.

4.1 Moving to the Real World
In addition to the detailed study that we did in simulation,

we also ran some preliminary tests in a physical setup where
the robot was asked to arrange a set of chairs in a predefined
seating formation around a round table, some of which were
already in place. Fig. 6 shows a snapshot from the physical
setup in which we tested our proposed method.

There are a number of challenges that need to be ad-
dressed when switching from the simulated environment to
the physical one. The first one is the construction of the
world model. In simulation, we get the global pose informa-
tion of all the objects in the environment directly from the
simulator. However, in the physical setup, the robot’s global
pose information comes from the localization module, which
can be quite noisy compared to the perfect information re-
ceived in simulation. The pose of the chair is computed
relative to the robot; hence, the calculated global pose of
the chair is affected by the noise in the localization estima-
tion of the robot. In order to make it easier to detect the
chair visually, we placed AR tags on both sides of the back
of the chair (Fig. 6), which are visible most of the time from
almost all directions. However, perception is not perfect ei-
ther; therefore, additional noise comes from the perception
of the AR tags. The second challenge is the maintenance of
a reliable world model at all times. Since the Kinect sensor
is placed at a certain location on the robot with a certain
angle to satisfy multiple requirements, and the field of view
of the camera is limited, the AR tags cannot be seen any-
more when the robot gets very close to the object to push

Figure 6: A snapshot from one of the real world
experiments. The chairs and the robot almost per-
fectly match the models used in simulation. In order
to make the perception of the chair easier, we placed
AR tags on both sides of the back of the chair. The
robot uses its global localization estimate to com-
pute the global poses of the other objects in the
environment and construct its world model.

it. Those cases need to be covered by a good tracker so that
the robot can still have an idea of where the object is even
if it is not visible within the robot’s field of view.

During our preliminary tests, the robot was, in general,
able to construct a decent world model by combining its

perception with its localization information to generate and
execute push-manipulation plans. Even though we have not
performed detailed experiments in this setup, we observed
that there was an overall increase in the frequency of re-
planning due to the increased uncertainty in both perception
and action in real world.

5. CONCLUSION AND FUTURE WORK
Push-manipulation is one of the most interesting robotic

manipulation modalities that has attracted many researchers.
However, many of the proposed methods handle objects
with quasi-static properties and primitive geometric shapes,
yet they usually make use of complex mathematical mod-
els or utilize specialized physics engines to predict the out-
comes of various pushes. On the other hand, we propose
an experience-based approach, which does not require any
explicit mathematical model or the help of a physics engine.
Our mobile robot simply experiments with pushable com-
plex 3D real world objects to observe and memorize their
motion characteristics together with the associated uncer-
tainties in response to various pushing actions. It then uses
this incrementally built experience as building blocks of a
sampling based planner to construct push plans that are
safe and achievable. In contrast to the proposed approaches
in the literature, in our contribution

• we handle real world objects with complex 3D shapes
that may contact the robot on more than one point,

• the manipulated objects move on freely-rolling caster
wheels and do not stop immediately after the pushing
is ceased,

• the experiment environment is cluttered with obsta-
cles; hence, achievable and collision-free plans should
be constructed and manipulation should to be per-
formed delicately,

• we do not use any explicit mathematical models or
learn a mapping between the trajectories of the robot
and the object; we only utilize the experimented and
observed effects of the past pushing motions to antici-
pate the future, plan, and act accordingly.

We extensively tested our method in a realistic 3D sim-
ulation environment and performed some preliminary tests
in a physical setup, where a variety of pushable objects with
freely rolling caster wheels need to be navigated among ob-
stacles to reach their desired final poses. Our experiments
demonstrate safe transportation and successful placement of
several pushable objects in simulation and promising results
for the task or chair arrangement in real world.

Future work includes extensive testing and detailed ex-
perimentation in the physical setup, performing subset se-
lection among the reliable sequences to find the minimum
set of useful ones, expanding the skill set of the robot by
accumulating new experiences over time, and transferring
learned manipulation sequences among objects with similar
properties.

6. REFERENCES
[1] Kevin Lynch. Nonprehensile Robotic Manipulation:

Controlability and Planning. PhD thesis, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA,
March 1996.

[2] Kevin M. Lynch and Matthew T. Mason. Dynamic
nonprehensile manipulation: Controllability, planning,
and experiments. International Journal of Robotics
Research, 18:64–92, 1997.

[3] Marcos Salganicoff, Giorgio Metta, Andrea Oddera,
and Giulio Sandini. A Vision-Based Learning Method
for Pushing Manipulation. In In AAAI Fall
Symposium Series: Machine Learning in Vision:
What Why and How?, 1993.

[4] Pankaj K. Agarwal, Jean claude Latombe, Rajeev
Motwani, and Prabhakar Raghavan. Nonholonomic
path planning for pushing a disk among obstacles. In
Proceedings of ICRA’97, 1997.

[5] Dennis Nieuwenhuisen, A. Frank van der Stappen, and
Mark H. Overmars. Path Planning for Pushing a Disk
using Compliance. In IEEE/RSJ IROS, pages
4061–4067, 2005.

[6] Dennis Nieuwenhuisen, A. Frank van der Stappen, and
Mark H. Overmars. Pushing Using Compliance. In
IEEE ICRA, pages 2010–2016, 2006.

[7] Mark de Berg and Dirk H. P. Gerrits. Computing
Push Plans for Disk-Shaped Robots. In ICRA, pages
4487–4492. IEEE, 2010.

[8] O. Khatib. Real-Time Obstacle Avoidance for
Manipulators and Mobile Robots. The International
Journal of Robotics Research, 5(1):90–98, Spring 1986.

[9] Takeo Igarashi, Yoichi Kamiyama, and Masahiko
Inami. A Dipole Field for Object Delivery by Pushing
on a Flat Surface. In ICRA, pages 5114–5119. IEEE,
2010.

[10] Manfred Lau, Jun Mitani, and Takeo Igarashi.
Automatic Learning of Pushing Strategy for Delivery
of Irregular-Shaped Objects. In ICRA, pages
3733–3738. IEEE, 2011.

[11] Sean Walker and J. Kenneth Salisbury. Pushing Using
Learned Manipulation Maps. In ICRA, pages
3808–3813. IEEE, 2008.

[12] C. Zito, R. Stolkin, M. Kopicki, and J. Wyatt.
Two-level RRT Planning for Robotic Push
Manipulation. In IEEE/RSJ IROS, 2012.

[13] Marek Kopicki, Sebastian Zurek, Rustam Stolkin,
Thomas Mörwald, and Jeremy Wyatt. Learning to
predict how rigid objects behave under simple
manipulation. In Proceedings of the IEEE ICRA 2011,
May 2011.

[14] Mehmet Dogar and Siddhartha Srinivasa. A planning
framework for non-prehensile manipulation under
clutter and uncertainty. Autonomous Robots,
33(3):217–236, June 2012.

[15] Steven M. LaValle. Planning Algorithms. Cambridge
University Press, New York, NY, USA, 2006.

[16] Steven M. LaValle. Rapidly-Exploring Random Trees:
A New Tool for Path Planning. Technical report, 1998.

[17] Webots. http://www.cyberbotics.com. Commercial
Mobile Robot Simulation Software.

