
Experience Guided Mobile Manipulation Planning

Tekin Meriçli1 and Manuela Veloso2 and H. Levent Akın1

{tekin.mericli,akin}@boun.edu.tr,veloso@cmu.edu

1 Department of Computer Engineering, Boğaziçi University, Bebek, 34342, Istanbul, Turkey

2 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States

Abstract
The most critical moves that determine the success of a ma-
nipulation task are performed within the close vicinities of the
object prior to grasping, and the goal prior to the final place-
ment. Memorizing these state-action sequences and reusing
them can dramatically improve the task efficiency, whereas
even the state-of-the-art planning algorithms may require sig-
nificant amount of time and computational resources to gen-
erate a solution from scratch depending on the complexity
and the constraints of the task. In this paper, we propose a
hybrid approach that combines the reliability of the past ex-
periences gained through demonstration and the flexibility of
a generative motion planning algorithm, namely RRT∗, to
improve the task execution efficiency. As a side benefit of
reusing these final moves, we can dramatically reduce the
number of nodes used by the generative planner, hence the
planning time, by either early-terminating the planner when
the generated plan reaches a “recalled state”, or deliberately
biasing it towards the memorized state-action sequences that
are feasible at the moment. This complementary combination
of the already available partial plans and the generated ones
yield to fast, reliable, and repeatable solutions.

Introduction
Planning for fine reaching and manipulation is a difficult
problem as the generated plans should be very well tuned for
the robot to succeed in its task. Depending on the complex-
ity and the constraints of the manipulation task at hand, even
the state-of-the-art planners may require significant amount
of time and computational resources to generate plans that
will end with a success. The most critical parts of a manipu-
lation task, though, are usually the moves performed within
the close vicinities of the object prior to grasping or the goal
prior to the final placement. Re-using parts of the solutions
around those critical regions that are executed in the past and
known to be successful can increase the manipulation effi-
ciency significantly by reducing the overall computational
demand for planning.

In this paper, we contribute an algorithm that utilizes
demonstrated and memorized state-action sequences for
fine manipulation, and complements them with a genera-
tive planner if necessary. Given target object and goal con-
figurations, the robot searches its memory of demonstrated

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

fine manipulation motions executed successfully in the past,
checks their feasibilities for the current situation, and utilizes
the generative planner to reach a state where it can recall the
rest of the motion required to pick up or drop off the object.
Once it reaches one of the recalled states, the robot proceeds
with the execution of the corresponding sequence while ac-
tively monitoring its execution to prevent failures that may
occur due to sensing and actuation noise. As the most con-
strained parts of the task are covered by the remembered ex-
ecution sequences, utilization of these past experiences for
fine manipulation significantly reduces the amount of search
that the generative planner has to perform, hence improving
the overall planning time and efficiency. In that case the gen-
erative planner is only used to “roughly reach” the critical
motion region around the object or the goal, and then hand
over the delicate motions to the memorized state-action se-
quences.

Figure 1: Simulated problem environment with randomly
scattered chairs to be manipulated (red), desired final chair
poses indicated around a round table (green), boxes that
serve as obstacles, and an omni-directional robot used as the
mobile manipulator (bottom left corner).

We use each of the demonstrated state-action pair se-
quences individually as they are, considering them to be the
“fine-tuned final moves” that lead to the solution of the prob-
lem at hand, even though the common practice in the world
of Learning from Demonstration (LfD) is to use a suitable
machine learning algorithm to obtain a generalized execu-
tion policy out of the demonstrated state-action pairs that
can be used for reproducing the demonstrated task (Argall
et al. 2009). In our work, these sequences are used analo-

gously to “cases” in a Case-Based Reasoning/Planning sys-
tem (Bartsch-Spörl, Lenz, and Hübner 1999; Spalzzi 2001);
that is, the robot knows how to handle the rest of the prob-
lem when it recalls the case. Therefore, all we need to do is
to move the robot to the cases that it can recall and apply di-
rectly, similar to what was done in (Ros et al. 2009) with the
introduction of the controllable state features concept. This
concept was used to transform the currently perceived state
to a familiar one rather than trying to adapt the case to the
current state.

Our proposed approach is suitable for any problem that
requires fine reaching and manipulation planning. As an ex-
ample problem domain, in this work we picked the particular
problem of manipulating chairs that are scattered in an en-
vironment cluttered with obstacles, and arranging them in a
predefined seating formation. In order to achieve this goal,
the robot first needs to reach the chairs, and then manipu-
late them in such a way to carry them to their desired poses
while avoiding the obstacles and the other chairs in the envi-
ronment. One constraint that we have in this problem is that
the robot can only grab a chair if it approaches the chair from
behind within certain distance and orientation limits. Not ex-
ceeding a certain velocity while trying to approach the chair
is also important since it can accidentally be bumped into
and pushed away from the robot, rendering it unreachable in
some circumstances. Figure 1 shows a screenshot from the
simulated problem environment, where the chairs to be ma-
nipulated are shown in red and their desired final poses are
shown in green. The robot shown on the bottom left corner
of the figure is composed of a round omni-directional base
and a special attachment unit that grabs the chair when the
robot is properly positioned behind it. On this example prob-
lem, we present extensive experimental evaluation of our al-
gorithm using RRT∗ as the generative planner, and two dif-
ferent methods of combining past experience with the plan
generation process.

The rest of the paper is organized as follows. First, we
provide some brief background information on the Rapidly-
exploring Random Trees (RRT) based approaches and give
an overview of the related work. Next, we thoroughly ex-
plain the proposed approach, present extensive experimental
evaluation, and discuss the results in depth. Finally, we con-
clude our paper and point out some possible future work we
aim to tackle.

Background
In this work, we utilize a Rapidly-exploring Random Trees
(RRT) (LaValle 1998; 2006) based algorithm, namely RRT∗,
as the generative planner component of our proposed ap-
proach since RRT is the most commonly used sampling
based motion planning algorithm due to its simplicity, prac-
ticality, and probabilistic completeness property. Starting
from the initial configuration, the RRT algorithm incremen-
tally builds a tree by uniformly sampling points from the
state space and growing the tree in the direction of the sam-
ple by extending the closest node of the tree towards the
sample. It is also possible to bias the tree growth towards
the goal by using the goal itself as a sample with probability
p, and sampling randomly with probability 1− p.

As the number of nodes in the tree increases, finding the
closest node to the randomly sampled point takes more time
since this operation requires the entire tree to be traversed.
There has been attempts to use more efficient data structures
for faster nearest neighbor computation as well as heuris-
tics to speed up the algorithm. Bruce and Veloso (Bruce
and Veloso 2003) contributed the execution extended RRT
(ERRT) algorithm, where the plan generated in the previ-
ous iteration is used to guide the progress of the plan in the
current iteration by keeping a waypoint cache with the as-
sumption that the environment did not change significantly
between the two iterations. This approach proves very useful
when used in highly dynamic environments that require in-
tensive re-planning, such as robot soccer. Urmson and Sim-
mons (Urmson and Simmons 2003) proposed heuristically-
guided RRT (hRRT), where they shape the probability dis-
tribution to make the likelihood of selecting any particular
node based on the node’s potential exploratory or lower cost
path contributions.

A very recent study that is focused on the optimality of
the paths generated by RRT was contributed by Karaman
and Frazzoli (Karaman and Frazzoli 2010), in which they
present RRT∗. In an RRT∗ tree, each tree node stores its dis-
tance from the start node in terms of path length, and instead
of looking for the closest single node to the sampled point,
RRT∗ looks for a set of near nodes. Therefore, when a new
point is sampled, not the closest node but the node with the
lowest cost among the near nodes is extended towards the
sample. Also, the near nodes neighborhood is restructured
by modifying the parents and children of the nodes in or-
der to end up with lowest cost paths. In our experiments, we
used RRT∗ since the optimality and directedness of the gen-
erated paths better complemented the idea in our proposed
approach, which is reaching the critical region as fast and
directly as possible and fine tuning within that region.

Related Work
Reusing previously constructed paths or motion segments
has been investigated in various forms in the literature. We
review the most recent related studies here.

Cohen et al. (Cohen et al. 2011) proposed constructing
a graph with predefined motion primitives and performing
a search on that graph to plan a path while satisfying the
constraints via the solutions provided by primitives that are
generated on the fly by various analytical solvers. In order to
improve the planning efficiency, they initially plan for only
4 of the total of 7 degrees of freedom (DoF) of the manip-
ulator, and then switch to full 7 DoF planning towards the
end, which resembles the approach that we propose in this
paper.

Berenson et al. (Berenson, Abbeel, and Goldberg 2012)
contributed a framework which utilizes stored end-to-end
paths and a generative planner in parallel to plan the re-
quired motion for a given problem. They simultaneously
start planning from scratch and looking for a similar stored
path which they can repair and reuse, and use the path re-
turned by whichever method finds a solution first. The sim-
ilarity of a stored path to the given situation is determined
by comparing the start and end points, and BiRRT is used

p
1

a
1

p
2

a
2

p
3

a
3

p
4

a
4

p
30

a
30

p
n

a
n

Target

(a) (b) (c)

Figure 2: (a) Diagram illustrating how the pose-action pairs are chained one after the other. The concentric circles represent the
entry points. Snapshot from the simulation and the visualization environments showing the robot trying to reach the chair (b)
and the goal after the chair is grabbed (c). The orientations of the robot, the chair, and the goal are indicated with thick arrows,
and the entry points of the fine reaching sequences are depicted as little arrows around the chair and the goal.

to repair infeasible paths by filling in the gaps caused by the
obstacles along the path.

Ye and Alterovitz (Ye and Alterovitz 2011) combined
LfD with motion planning. The demonstrated motions are
recorded relative to the robot’s torso as well as the objects of
interest in the task, and dynamic time warping is used for
aligning multiple demonstration sequences. Implicitly en-
coded constraints, such as keeping the spoon full of sugar
level to avoid spilling, are automatically extracted from the
task execution sequences by looking at the low variance por-
tions of the data. Recorded and processed trajectories are
reused in relatively similar scenarios to the ones used for
learning, and generative planning is utilized to bridge the
gaps when obstacles are present along the way. As in the
work of Berenson et al. (Berenson, Abbeel, and Goldberg
2012), they also store full, end-to-end paths. In order for the
full length paths to be meaningful for reusing, a large num-
ber of them covering various situations should be stored.
This is where our proposed approach differs from the pre-
sented methods in the literature. We store only a very little
number of partial relative paths (i.e. sequences) that cover
the critical region around the object and the goal; hence,
these paths can be reused in any scenario setup.

Approach
Our algorithm consists of the following components:
• A set of execution sequences performed successfully in

the past
• An execution monitoring system to ensure accurate exe-

cution of the remembered action sequences
• A generative planner

In the remainder of this section, we elaborate on how we
define and obtain the set of fine-tuned final moves (i.e. se-
quences) for the reaching and manipulation sub-problems,
how we ensure that these sequences are executed in such a
way to obtain the desired results, and how we merge the so-
lutions provided by a generative planner and the available

sequences so that they complement each other effectively to
yield faster and more reliable executions.

Execution Sequences for Fine Manipulation
Even though there are infinitely many possible reaching and
grasping configurations for a particular object, humans usu-
ally follow a rough, object-independent reaching pattern that
is as direct as possible, and switch to object-specific fine ma-
nipulation moves when they get close enough to the object.
Those object-specific fine moves are usually finite in num-
ber; for example, a bottle is grasped from the side or on its
cap, a mug is grasped from the side or on its handle, etc. In
some cases, as in our problem domain, reaching and manip-
ulation configurations may have additional constraints; that
is, a chair can only be reached and grabbed when approached
from behind within certain orientation limits.

Trying to generate plans that will achieve those fine moves
from scratch each and every time the object needs to be ma-
nipulated becomes burdensome and inefficient. Therefore,
we make the robot memorize these finite amount of object-
specific fine reaching and manipulation moves represented
as sequences of state-action pairs as we demonstrate the
robot how to perform them.

In our example problem domain of chair manipulation,
we joystick the robot within the close vicinity of the chair
to demonstrate it how to approach the chair from different
directions and end up right behind it for a successful pick
up. Similar demonstrations are provided within the close
vicinity of the goal pose to teach the robot how to approach
the destination from different directions. These recorded se-
quences are composed of the robot’s poses relative to the
target (i.e. either the object or the goal) together with the cor-
responding motion commands. Therefore, a sequence takes
the form

(℘1, a1), (℘2, a2), (℘3, a3), ..., (℘n, an)

where ℘i is the relative pose of the robot to the target de-
noted as a 3-tuple< x, y, θ >, and ai is the action associated
with ℘i, also denoted as a 3-tuple < vx, vy, vθ > indicating

the translational and rotational velocities of the robot. Using
relative poses provides the flexibility of pose invariance; for
example, if a bottle to be reached and grasped lays on its
side on a table, the robot can still perform the task even if
the demonstrations were given when the bottle was standing
upright on the table.

The demonstrations are recorded at each step of the
robot’s perception cycle, in our case at a frequency of 30Hz.
As the number and the length of the recorded sequences in-
crease, such high recording rate may pose problems in terms
of efficient processing and scalability. To address this prob-
lem, we grant access to a sequence at every nth frame, called
an entry point. The value of n can be adjusted depending on
the requirements of the task. Figure 2 illustrates a diagram
representation of a sequence and shows snapshots of a cer-
tain configurations of the robot trying to reach the chair and
carry it to the goal in the simulated environment, together
with the corresponding sequences defined within the close
vicinities of the chair and the goal for providing fine reach-
ing moves. The entry points are visualized as arrows that
indicate the robot’s pose at that particular frame of the se-
quence at n = 30; that is, the entry points are present every
30 frames.

Since these sequences are defined relative to the target,
some of the entry points may not be reachable due to ob-
struction depending on the target’s global pose and the state
of its immediate surrounding. This is indicated by the fea-
sibility flag of the entry point, which is set according to the
reports of a collision model. Only the feasible set of entry
points are considered when making use of the sequences. An
example visualization of the feasible (yellow) and infeasible
(red) entry points can be seen in Figure 2(c) and Figure 4.

Execution Monitoring
Due to the uncertainty in sensing and actuation that affects
the execution, there may be discrepancies between the ex-
pected outcome of a particular action and the actually ob-
served one. Therefore, actively monitoring the execution is
necessary in robotics in order to detect and handle problems
caused by the uncertainty rooted in both the robot itself and
the environment (Pettersson 2005).

Since we make the robot use the demonstrated fine reach-
ing and manipulation moves without any generalization, we
need to ensure that those moves are performed as demon-
strated to lead to successful completion of the task. There-
fore, we make the robot keep track of its execution along
the sequence by computing the difference between its actual
pose relative to the target and the pose stored in the cur-
rent frame of the sequence, and checking whether the loca-
tion and orientation differences are within certain tolerance
thresholds. Based on its memory of the sequence, at each
time step the robot knows what state it should be in after
performing the action associated with the current state. If it
ends up in an unexpected state; that is, if the current frame of
the sequence being followed suggests that the robot’s rela-
tive pose at that moment should be ℘ but it is actually ℘′ and
||℘−℘′|| > ε, then the robot computes a linear interpolation
between ℘ and ℘′, and moves accordingly to get back to the
expected state. After correcting its pose, the robot continues

following the sequence. As opposed to blindly executing the
demonstration, execution monitoring increases the chance of
successful operation.

Generative Planner
The fine reaching and manipulation sequences are demon-
strated only within the close vicinity of the target; therefore,
the robot first needs to reach these sequences to be able to
use them. However, since the demonstrated sequences are
taking care of the fine moves that need to be performed to
achieve the task, reaching the sequences can be done roughly
and as directly as possible, hence saving computation and
execution time. To fill in this gap, we use the RRT∗ gen-
erative motion planning algorithm even though any kind of
motion/path planner could have been used for this purpose.
RRT variants in general provide fast solutions, and RRT∗
in particular provides an optimal solution in terms of path
length.

We utilize the feasible entry points of the sequences to
guide the generative planner in two ways. The first approach
is to early-terminate plan generation when an entry point
(i.e. a recalled state) is by chance reached first while trying
to reach the goal directly. The second approach is to treat en-
try points as sub-goals and deliberately direct the generative
planner towards them as well as the goal itself, consider-
ing that each sequence, hence each entry point, leads to the
goal. This guidance results in much more direct paths to the
entry points and it significantly reduces the number of RRT∗
nodes required to find the path. In RRT-based algorithms, the
cost of finding the nearest node of the generated tree to the
randomly sampled point goes up with the increasing num-
ber of nodes in the tree; therefore, by keeping the number of
generated nodes low, we reduce the planning and execution
time significantly. Figure 3 shows the difference between us-
ing the generative planners alone, early-terminating the plan
when an entry point is reached by coincidence, and delib-
erately guiding the planner by directing it towards the entry
points.

In addition to reaching the sequences when they are far
away, the generative planner is also used during execution
of the sequences to hop to another feasible entry point when
the next entry point in the followed sequence is observed
to be infeasible (i.e. obstructed), which in a way similar to
the methods used by Berenson et al. (Berenson, Abbeel, and
Goldberg 2012) and Ye and Alterovitz (Ye and Alterovitz
2011) to bridge the gaps. In order to prevent infinite loops,
all entry points prior to the current entry point of a sequence
are marked as infeasible as the robot moves along the se-
quence. Figure 4 illustrates both of these concepts.

Algorithm
Initially, the remembered sequences are placed around the
target based on its global pose. The entry points of the se-
quences are tested for collisions with the environment, and
marked as either feasible or infeasible accordingly. Then,
the set of feasible entry points are passed to the generative
planner along with the actual desired final pose of the robot.
When the nodes of the generative planner coincide with an
entry point within the distance and orientation thresholds

(a) (b) (c)

Figure 3: Different ways of combining the generative planner and the sequences to achieve the task; (a) using RRT∗ alone
without any guidance (4480 nodes), (b) early termination of the plan when an entry point is hit by coincidence (716 nodes), and
(c) deliberately directing the planner towards the entry points (67 nodes).

(a) (b)

Figure 4: Using the generative planner to bridge feasible en-
try points during reaching (a) and manipulation (b). Feasible
entry points are shown in yellow, infeasible ones are shown
in red, and the generated path is shown in blue.

used for execution monitoring purposes, planning process is
terminated and the generated waypoints are followed to get
to the target entry point (Figure 3). Once the entry point is
reached, the robot starts executing the actions stored in the
sequence frame by frame while monitoring its execution at
each step. If the next entry point of the sequence happens to
be blocked while the robot is following a sequence, then the
selected sequence is dropped and generative planning is ini-
tiated again to form a bridge between the current entry point
and another feasible one (Figure 4).

The benefits of the proposed approach are two-fold:

1. By utilizing the local solutions obtained through demon-
stration within the close vicinity of the target, the genera-
tive planner is relieved from the challenging task of gen-
erating plans that will provide very fine moves to solve
the entire problem. Therefore, it is only used to reach the
critical region as roughly and directly as possible.

2. The generative planner serves as a gap filler either be-

tween points where no previously known (i.e. demon-
strated) solutions exist, or between feasible entry points
of the sequences in case the next entry point is observed
to be obstructed while following a sequence.

Also, by increasing the number of possible goal points via
treating the entry points as sub-goals, the generative plan-
ner is helped to generate more directed solutions in much
less time since it is much easier to reach a bigger region of
many possible goals than a single point with tight orientation
constraints. This complementary combination of the already
available partial plans and the generated ones yield to fast
yet reliable solutions.

Experimental Evaluation
Experiments are performed in Webots mobile robot simula-
tion environment 1. The simulated worlds were 15m× 15m
in dimensions, and the robot had a maximum translational
velocity of 0.5 m/s and a rotational velocity of π/2 rad/s.
We first demonstrated the robot 5 sequences for reaching
the chair and grabbing it, and 4 sequences for delivering the
chair to a goal pose. Then we created 10 challenging setups
for the problem of chair manipulation, and ran 100 experi-
ments for each of the three possible uses of the generative
planner.

The RRT∗ generative planner is allowed to expand trees
of up to 12000 nodes, each of which represented the 3-DoF
pose of the robot since the the orientation as well as the
location is important in manipulation tasks. A goal bias of
p = 0.01 is used during tree generation process and the
search is terminated when a node is within 0.05 m of lo-
cation and π/36 rad of orientation difference limits. Due to
these tight limits, the generative planner often failed to gen-
erate a valid path (i.e. exceeded the maximum number of
allowed nodes) when it is used without any guidance by the
entry points, either as early termination conditions or sub-
goals to be reached; however, when guidance was utilized,

1Webots Mobile Robot Simulation Software,
http://www.cyberbotics.com

the planner never failed. The average failure rates of the
RRT∗ planner when used alone was 41.29%. The number
of nodes generated when the generative planner was used
alone is still substantially higher (Figure 3) even if we leave
out the failed cases and compute the mean over 100 success-
ful cases. Figure 5 shows the mean number of nodes used by
plain RRT as well as the RRT∗ generative planners in each of
the 10 experiment environments. The target chair was very
close to the edge of the world and had an obstacle right be-
hind it in Environment 7, making it particularly challenging
to generate a collision-free path from scratch.

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

Environment

N
um

be
r

of
 n

od
es

RRT

RRT−early termination

RRT−directed

RRT*

RRT*−early termination

RRT*−directed

Figure 5: Mean number of nodes generated by the RRT and
RRT∗ planners in various guidance levels.

In order to demonstrate the advantage of utilizing the big-
ger region created by the local sequences around the target
over merely increasing the single goal bias, we blocked the
direct path to the back of the chair, as shown in Figure 3,
and tested all three approaches in that setup by running each
of them 10 times. Table 1 reports the average required time
and the number of nodes to generate a solution. The reason
that RRT∗ alone with a high goal bias (p = 0.75) spent such
a long time is because it failed several times before a valid
path is finally generated.

Table 1: Performance with blocked direct path to the object.
Method # nodes Planning time (sec)

RRT* alone 7690 309.682
Early termination 1249 0.821

Deliberate directing 44 0.081

We also measured the average execution time for com-
pleting the entire task of arranging all four of the chairs in
their desired final configurations, which is shown in Table 2.

Table 2: Average task completion times.
Method Task completion time (sec)

RRT* alone 364.011
Early termination 280.779

Deliberate directing 259.439

Conclusion and Future Work
In this work, we presented an algorithm for reaching and fine
manipulation tasks, which utilizes previously experienced
locally defined fine-tuned motion sequences to achieve the
task, and uses a generative planner to reach the region cre-
ated by these sequences as fast and directly as possible. We
show that generative planning can be significantly reduced
by past experience guidance utilized as either early termina-
tion conditions or sub-goals that the robot is trying to reach.
This complementary combination of the already available
partial plans and the generated ones yield to fast yet reliable
and repeatable solutions.

Application of the proposed approach to both prehen-
sile and non-prehensile manipulation problems in higher di-
mensional setups, handling uncertainty in perception explic-
itly in addition to execution monitoring, accumulating new
experiences over time, and transferring learned fine reach-
ing and manipulation sequences among objects with similar
properties are some of the problems to tackle in the future.

References
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and Automation Systems 57(5):469–483.
Bartsch-Spörl, B.; Lenz, M.; and Hübner, A. 1999. Case-
based reasoning - survey and future directions. In Proc. of
the 5th German Biennial Conference on Knowledge-Based
Systems, 67–89. Springer Verlag.
Berenson, D.; Abbeel, P.; and Goldberg, K. 2012. A robot
path planning framework that learns from experience. In
Proc. of ICRA.
Bruce, J., and Veloso, M. M. 2003. Real-time randomized
path planning for robot navigation. Lecture Notes in Com-
puter Science 288–295.
Cohen, B. J.; Subramania, G.; Chitta, S.; and Likhachev, M.
2011. Planning for manipulation with adaptive motion prim-
itives. In ICRA’11, 5478–5485.
Karaman, S., and Frazzoli, E. 2010. Incremental sampling-
based algorithms for optimal motion planning. In RSS.
LaValle, S. M. 1998. Rapidly-Exploring Random Trees: A
New Tool for Path Planning. Technical report.
LaValle, S. M. 2006. Planning Algorithms. New York, NY,
USA: Cambridge University Press.
Pettersson, O. 2005. Execution monitoring in robotics: A
survey. Robotics and Autonomous Systems 53:73–88.
Ros, R.; Arcos, J. L.; Lopez de Mantaras, R.; and Veloso,
M. 2009. A case-based approach for coordinated action
selection in robot soccer. Artificial Intelligence 173:1014–
1039.
Spalzzi, L. 2001. A survey on case-based plan-
ning. Artificial Intelligence Review 16:3–36.
10.1023/A:1011081305027.
Urmson, C., and Simmons, R. 2003. Approaches for heuris-
tically biasing RRT growth. In IROS 2003, volume 2.
Ye, G., and Alterovitz, R. 2011. Demonstration-guided mo-
tion planning. In Proc. of ISRR.

