

Abstract— A single biological neuron is able to perform

complex computations that are highly nonlinear in nature,

adaptive, and superior to the perceptron model. A neuron is

essentially a nonlinear dynamical system. Its state depends on

the interactions among its previous states, its intrinsic

properties, and the synaptic input it receives. These factors are

included in Hodgkin-Huxley (HH) model, which describes the

ionic mechanisms involved in the generation of an action

potential. This paper proposes training of an artificial neural

network to identify and model the physiological properties of a

biological neuron, and mimic its input-output mapping. An HH

simulator was implemented to generate the training data. The

proposed model was able to mimic and predict the dynamic

behavior of the HH simulator under novel stimulation

conditions; hence, it can be used to extract the dynamics (in vivo

or in vitro) of a neuron without any prior knowledge of its

physiology. Such a model can in turn be used as a tool for

controlling a neuron in order to study its dynamics for further

analysis.

I. INTRODUCTION

n the past 50 years, much has been learned about the

behavior of biological neurons. In particular, the model

developed by Alan Hodgkin and Andrew Huxley [2] made it

possible for the first time to understand how neurons spike.

Ion channels with complex voltage-gated properties were

brought together into a mathematical model that explained

how action potentials are generated. This model is still the

foundation for most models of biological neurons today,

although it is computationally expensive to build and

simulate. In particular, the model includes many properties

that need to be set by making various assumptions about the

physiology of a neuron.

The question therefore arises; would it be possible to

construct a black box that would capture the input-output

relationship of a neuron without worrying about its

physiological composition? If so, it would be possible to do

online modeling that can provide the necessary tools for

capturing the dynamical state of a biological neuron,

Manish Saggar is with the Department of Computer Science at the

University of Texas at Austin, Austin TX 78712 USA (e-mail:

mishu@cs.utexas.edu).

Tekin Meriçli is with the Department of Computer Science at the

University of Texas at Austin, Austin TX 78712 USA (e-mail:

tmericli@cs.utexas.edu).

Sari Andoni is with the Institute of Neuroscience at the University of

Texas at Austin, Austin TX 78712 USA (e-mail: andoni@mail.utexas.edu).

Risto Miikkulainen is with the Department of Computer Science at the

University of Texas at Austin, Austin TX 78712 USA (e-mail:

risto@cs.utexas.edu).

simulate its output for further analysis, and may provide a

more powerful dynamic clamp and online control.

ANNs have been successfully used for system

identification in nonlinear domains [6, 7], as well as

controllers for nonlinear dynamic plants [6]. In systems

theory, multi-layer networks represent static nonlinear maps,

while recurrent networks represent nonlinear dynamic

feedback systems. Multi-layer networks have indeed proven

useful in pattern recognition tasks [8-10], while recurrent

networks have been used extensively in learning time

sequences and modeling associative memories [11-14].

Further, given unbounded number of hidden neurons, the

feedforward ANNs can approximate the behavior of an

arbitrary continuous or “otherwise reasonable” function

within arbitrary accuracy ε on a compact domain (this result

is called universal approximation theorem [20]). However,

there is no such result for time series prediction. Moreover,

to our knowledge, ANNs have not been used to model the

temporal behavior of a single neuron, although it is a task for

which they are well suited.

The main objective of this paper is to find out whether it is

possible to learn the nonlinear dynamics of a neuron, using

ANNs with restricted number of building blocks, without any

prior knowledge about its structural properties. The resulting

model can be used as a tool for physiologists to perform

more accurate experiments with biological neurons; such as

determining how they will respond to given inputs, making it

possible to design interactions that bring about the desired

behaviors in the neuron.

 Section II reviews the background on modeling biological

neurons, including the Hodgkin-Huxley model, as well as the

NARX and LRN architectures used in the experiments.

Section III presents the experiments and the corresponding

results. Finally, Section IV discusses future applications of

the model.

II. BACKGROUND

This section gives a brief introduction to modeling the

behavior of neurons, specifically the HH model. It also

reviews prior work on identifying nonlinear dynamical

systems with various ANN architectures.

A. Modeling a biological neuron

Conventional methods of modeling a biological neuron

require knowledge of its spatial structure and biophysical

System Identification for the Hodgkin-Huxley Model using Artificial

Neural Networks

Manish Saggar, Tekin Meriçli, Sari Andoni, Risto Miikkulainen

I

1-4244-1380-X/07/$25.00 ©2007 IEEE

Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 19, 2009 at 18:45 from IEEE Xplore. Restrictions apply.

properties of its membrane. One common approach is to

divide its structure into small connected compartments each

having similar electrical properties.

Compartmental modeling has been widely used in

simulating neurons and is the basis of numerous modeling

packages such as Neuron [18] and GENESIS [19]. Based on

their levels of detail, various compartmental models have

been proposed, the most common of which is the HH model

[2].

The HH model simulates the biophysical properties of a

neuron, including the ionic mechanism involved in

generating an action potential. The initial experiments by

Hodgkin and Huxley were conducted using the giant axon of

a squid to explain the ionic mechanisms underlying the

initiation and propagation of action potential [2]. The model

has since played a seminal role in biophysics and neuronal

modeling. It describes the kinetics of sodium (Na
+
) and

potassium (K
+
) channels involved in generating the action

potential. The model can be described by the following four

nonlinear ordinary differential equations:

)()()(43

KKNaNaLL EVngEVhmgEVg
t

V
Cm −−−−−−=

∂

∂

mVmV
t

m
mm)()1)((βα

∂

∂
−−=

hVhV
t

h
hh)()1)((βα

∂

∂
−−=

nVnV
t

n
nn)()1)((βα

∂

∂
−−=

where n, m, h describe the gating particles involved in the

activation of K
+
 channels and the activation and inactivation

of Na
+
 channels, respectively. The functions α and β are

voltage-dependent rate functions for each gating particle, Eion

and gion are the equilibrium potential and conductance of

each ion, respectively, L is the leak current, C is the

capacitance of the membrane, and Ie is the input current

injected through the recording electrode.

It is important to note that the above equations describe a

nonlinear dynamical system that can exhibit complex

behavior including periodic and chaotic firing as well as a

variety of different bifurcations depending on its parameters

and the input (Ie) [17].

B. System identification using neural networks

Two artificial neural network architectures are commonly

used for system identification: the nonlinear autoregressive

network with exogenous inputs (NARX) and the layer-

recurrent network (LRN).

NARX [3, 4] is a dynamic network with feedback

connections enclosing several layers of the network. The

NARX model is based on the linear ARX model, which is

commonly used in time-series modeling. The NARX model

can be defined as:

)),(),...,2(),1(),(),...,2(),1(()(uy ntututuntytytyfty −−−−−−=

where the next value of the output signal, y(t), is regressed

on previous values of the output signal and previous values

of the input signal, u(t) [3, 4]. Previous values of both input

and output can be fed to the network using tapped-delay

lines.

NARX has been used in several tasks including one-step

time series prediction [3, 4], nonlinear filtering, and

nonlinear dynamic system control [6]. Figure 1(a) and Figure

1(b) illustrate two possible configurations of a NARX

network; series-parallel and parallel, respectively. In series-

parallel configuration the input and the output of the system

are both fed to the network. In contrast in the parallel

configuration, only the input of the system is connected to

the network and the output of the network is fed back to

itself.

(a)

(b)

Figure-1. Two versions of the NARX network architecture.

(a) Series-parallel architecture. The actual output (y) of the

system to be modeled is used as input, instead of feeding

back the network’s estimates of the output (Y). (b) Parallel

architecture. The output of the network (Y) is fed back,

making the network a recurrent system. Such a network can

predict the entire series; however, it is harder to train.

 In series-parallel configuration the output of the system

itself is available during training, which makes the input to

the network more accurate. Also, the resulting network has

feed-forward architecture; hence static back-propagation can

be used for training. The disadvantage of the series-parallel

configuration is that the network predicts only the next time

step and needs to be transformed to a parallel configuration

in order to predict the complete behavior of the system.

Parallel configuration is usually preferred in system

identification because once trained it can predict the

behavior of the system for the entire period. However, the

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 19, 2009 at 18:45 from IEEE Xplore. Restrictions apply.

parallel configuration also has a disadvantage; it requires

recurrent back-propagation, which is a computationally

expensive operation.

The second common system identification architecture is

the Layer-Recurrent Network (LRN). The LRN is a

simplified version of the Simple Recurrent Network (SRN)

network [5]. It has a recurrent connection in each of its

hidden neurons; an LRN with two hidden layers is illustrated

in Figure 2. These recurrent connections store the values

from the previous time step, which can be used to identify

the input-output mapping for the future. An LRN commonly

has one hidden layer with a feedback connection from the

output of the hidden layer to its input. This recurrent

connection allows LRNs to both detect and generate time-

varying patterns. The experiments in this paper are based on

a two-hidden-layers architecture, which was found to be

more effective in practice. Because the recurrent connections

only store a copy of the activation, they do not need to be

trained. Therefore, regular back-propagation can be used to

train the LRN.

Figure-2. An LRN with two hidden layers. Each hidden layer

has a recurrent connection that acts as a memory to store

pattern information. The network can therefore be trained

efficiently with regular back-propagation.

III. EXPERIMENTS

A simulator was implemented based on the HH equations

to test the hypothesis that ANNs can learn the behavior of a

HH model. This simulator was used to generate training data

for the neural network. Standard parameter values for HH

equations used in our implementation are provided in

Table1.

The four dynamic properties that a HH simulator should

depict in the output, given a current step, are described as

follows.

Threshold: The membrane potential is required to exceed

a certain value to fire an action potential. This limiting value

is called the threshold as shown in Figure 3.

Periodic firing: Multiple spikes are fired by a neuron

when its membrane potential is sustained at a voltage higher

than the threshold for some duration. This phenomenon is

called periodic firing, and is illustrated in Figure 4.

Parameter Value

EK -77 mV

ENa +50 mV

ELeak -57.4 mV

gLeak 3 µS

gK 360 µS

gNa 1200 µS

Cm 1 nanoFarad

Area 0.1 mm2

Table-1. Standard parameter values for the Hodgkin-Huxley

Simulator.

Figure-3. (a) HHS sub-threshold output given positive step

current, followed by set of positive step currents ultimately

triggering an action potential (b). (c) HHS output depicting

sub-threshold response to a negative step current followed by

an anode break action potential (d).

Figure-4. HHS output depicting the refractory period and

periodic firing due to sustained input current.

Refractory period: A brief period of time, typically one

millisecond, following the action potential during which the

nerve does not respond to a second stimulus. The refractory

period is illustrated in Figure 4.

Anode break: An anode break action potential occurs at

the trailing edge of a negative current step input. It is a result

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 19, 2009 at 18:45 from IEEE Xplore. Restrictions apply.

of the deactivation of the Na
+
 channels during the negative

input and their sudden activation at the end of the stimulus.

Figure 3 illustrates this phenomenon.

The rest of this section explains implementation details for

each of the three ANN architectures and the corresponding

results. The parameter values for those architectures are

provided in Table 2.

First we tested the series-parallel NARX network. One of

the inputs for the network was a current step, u(t), for a 232

ms duration. The delay for this input was set to 4. The

second input was the output from the HH model, v(t), for the

same duration and delay. This network was trained

separately on negative and positive current values. The

output of the system after training is shown in Figure 5.

Parameter Value

NARX Layer Recurrent

Series-

Parallel

Parallel

Input units 2 1 1

Hidden layers 1 1 2

Hidden

neurons

40 10 {10,20}

Transfer

function

(hidden)

tan-sigmoid tan-sigmoid {tan-sigmoid, tan-

sigmoid}

Initial weights Random Random Random

Output neurons 1 1 1

Transfer

function

(output)

Pure-linear Pure-linear Pure-linear

Training

algorithm

Backprop Conjugate-

Gradient

Conjugate-

Gradient

Temporal delay

input

4 10 N/A

Temporal delay

output

4 10 N/A

Table-2. Parameter values for the series-parallel and parallel

NARX networks and LRN networks.

The series-parallel architecture was able to learn the

properties of the HH membrane; i.e. the threshold, periodic

firing, refractory period, and anode break for any given time

step. This architecture has a great potential in control

applications [3, 4]; hence, the trained network can be used to

control the dynamical system (i.e. the HH model), and make

it behave according to the user requirements. It can

potentially be used as a tool for dynamic clamping.

However, the series-parallel NARX network was not able

to extend these predictions beyond the current time step. The

reason was that while the output of the HH model was

always presented as one of the inputs to the network during

training, such information was not available during testing.

Furthermore, this network did not generalize to novel

stimuli.

(a)

(b)

Figure-5. (a) Output of the series-parallel NARX network

trained on positive step current. (b) Output of the series-

parallel NARX network trained on negative step current.

The parallel version of NARX was tested in the second

experiment. This network took as its input, a current step,

u(t), for 232 ms, as well as its own output with a temporal

delay. In other words, this network is recurrent, which made

it more powerful than the series-parallel architecture. Its

output was the voltage signal, v(t), for the same amount of

time as the input. The temporal delays for both inputs were

10, as shown in Table 2.

The network was trained on various current steps ranging

from -12 to 28 nA, consistent with the operational limits for a

neuron. Like the series-parallel architecture, the parallel

network learned the dynamic properties of HH simulator and

was also unable to generalize to novel stimuli (i.e. the testing

data). However, unlike the series-parallel architecture, it was

able to predict the complete series for training data. Figure

6(a) and Figure 6(b) show its output for positive and

negative current steps, respectively.

The LRN was tested in the third experiment. The

recurrence in its hidden layers provides explicit memory

storage and makes it one of most powerful architectures for

time series prediction. In the experiments, this feature also

found to help generalize the behavior into novel stimuli.

The LRN was trained only on a single current step of +10

nA for a duration of 232 ms. It was able to learn all four

characteristics of HH simulator from only this single training

instance. Figure 7(a) shows the output of the trained network

when tested with the training data itself. For comparison,

Figure 7(b) shows the output of another LRN, which was

specifically trained on -12 nA current step for a duration of

232 ms, and tested on the same data.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 19, 2009 at 18:45 from IEEE Xplore. Restrictions apply.

(a)

(b)

Figure-6. (a) Output of the parallel NARX network trained

on positive step current. (b) Output of the parallel NARX

network trained on negative step current.

Interestingly, the LRNs generalized very well to novel

inputs. For example, when the network from Figure 7(a)

trained on a positive input, was tested with the input of

Figure 7(b), a negative one, it predicted the anode break and

the action potential accurately. This behavior is illustrated in

Figure 8. It can easily be seen that although the output of the

network was not a perfect match with the actual output, the

network was able to capture the overall properties of

negative inputs, such as anode break and an action potential

afterwards. This result shows how powerful recurrent

networks can be in this task.

Furthermore, when tested with a long-term prediction, this

network again outperformed other network architectures. It

was able to predict the output for an extra 800 time steps for

a positive step signal, although it was trained once only for

duration of 232 ms. This result is shown in Figure 9. All

these tests show that the LRN learned the four characteristic

properties of the HH model and was able to generalize

successfully to previously unseen data.

These properties make the LRNs suitable for the tasks of

capturing the nonlinear dynamics of a neuron and interacting

with the neurons to bring about the desired behaviors.

IV. DISCUSSION & FUTURE WORK

Although it has a microscopic structure, a single biological

neuron can perform complex computations that are nonlinear

and adaptive in nature. These characteristics make it superior

to any simple artificial neuron model, at least in terms of

complexity. In order to understand such complexity, HH

models have been developed. However, such a model

sometimes requires years of manual work to match the

output of a biological neuron. This paper shows that it is

possible to train an ANN to perform the input-output

mapping of a biological membrane simulator from examples,

providing a practical way to construct black-box models of

biological neurons in future.

(a)

(b)

Figure-7. (a) Output of the LRN trained on positive step

current. (b) Output of the LRN trained on negative step

current; the network was able to predict the anode break.

Figure 8. Output of the LRN trained on positive step current,

predicting previously unseen negative stimuli.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 19, 2009 at 18:45 from IEEE Xplore. Restrictions apply.

The results obtained in the experiments indicate that it is

possible to learn the basic characteristics of the HH model.

Among the three architectures of time-series prediction, LRN

stands out as the best, since it was not only able to learn the

characteristics of HH equations, but was also able to

generalize to novel stimuli. The power of LRN lies in the

recurrent connections. The multiple recurrences provided

enough memory storage so that the general characteristics of

HH model can be learned based on a single example of the

input-output mapping.

Figure-9. Output of the LRN, trained on positive step

current, predicting long term future values.

 The most obvious direction of future work is to use this

approach to model a biological neuron in vitro. It should be

possible to account for the dynamical response of the neuron

online without any prior knowledge of its spatial structure, or

the ionic currents involved in generating its membrane

potential.

If successful, such a model can then be used to design

sophisticated biological experiments. For instance, it should

be possible to determine how to utilize a dynamic clamp [16]

to introduce an artificial membrane or particular synaptic

conductances into the biological neuron. The ANN model

predicts the future output of the neuron, which means that

complex patterns of input current can be calculated for use

with the dynamic clamp to produce the desired neural

behavior. In the future, it may even be possible to build

hybrid circuits of artificial and biological neurons. Such a

system would allow physiologists to control the neuron

online without having to e.g. block particular ion channels.

Such experiments would in turn contribute to developing a

detailed understanding of how biological neurons operate

and process information.

V. CONCLUSION

This paper shows that ANNs can learn to behave like the

Hodgkin-Huxley model of a biological membrane. In the

future it should be possible to apply this approach to

modeling biological neurons in vitro. The main advantage of

this approach is that it does not require any prior knowledge

of the physiological properties of the neuron. After training

is completed, the neural process is encoded within the

weights of the ANN used to model the neuron. Several ANN

architectures were tested in this task, with the recurrency in

the LRN architecture proving to be the best. The results

show that the Hodgkin-Huxley model can be perfectly

learned by ANNs. Online modeling using ANNs can provide

the necessary tools for capturing the dynamical state of a

biological neuron, simulate its output for further analysis,

and may provide a more powerful dynamic clamp and online

control. Such mechanisms should prove valuable in

understanding the behavior of biological neurons in the

future.

ACKNOWLEDGMENT

This research was supported in part by NSF under grant

EIA-0303.

REFERENCES

[1] F. Rosenblatt, "The Perceptron: a Probabalistic Model for Information

Storage and Organization in the Brain," Psychological Review 65:386-

408, 1958.

[2] Hodgkin, A., and Huxley, A. “A quantitative description of membrane

current and its application to conduction and excitation in nerve”. J.

Physiol., 117:500544, 1952.

[3] K. S. Narendra and K. Parthasarathy, “Identification and control of

dynamical systems using neural networks,” IEEE Trans. Neural

Networks, vol. 1, pp. 4-27, Mar. 1990.

[4] S. Chen, S. A. Billings, and P. M. Grant, “Nonlinear system identification

using neural networks,” Int. J. Contr., vol. 51, no. 6, pp. 1191-1214,

1990.

[5] J. L. Elman, “Finding structure in time,” Cognitive Science, Vol. 14, pp.

179-211, 1990.

[6] Simon Haykin, “Neural Networks: A Comprehensive Foundation,” 2nd

Edition, Prentice Hall, 1999.

[7] A.U. Levin and K.S. Narendra. “Identification of Nonlinear Dynamical

Systems Using Neural Networks”. Neural Systems for Control, Chapter 6,

pp129-160.

[8] D. J. Burr, “Experiments on Neural Net Recognition of Spoken and

Written Text,” IEEE Trans. On Acoustic, Speech and Signal Proc., 36,

no. 7, 1162-1168, 1988.

[9] R. P. Gorman and T. J. Sejnowski, “Learned classification of sonar targets

using a massively parallel network”, IEEE Trans. Acoust., Speech, Signal

Processing, vol. 36, no. 7, pp. 1135 – 1140, 1998.

[10] T.J. Sejnowski and C. R. Rosenberg, “Parallel networks that learn to

pronounce English text”, Complex Systems 1, 145-168 (1987).

[11] B. Widrow, R. G. Winter, R. A.Baxter, “Layered neural nets for pattern

recognition,” IEEE Trans Acoustics Speech and Signal Processing,

ASSP-36(7):1109-1118, 1988.

[12] J. J, Hopfield, “Neural networks and physical systems with emergent

collective computational abilities,” Proc. Nat. Acad. Sci., U.S., vol. 79,

pp. 2554-2558, 1982.

[13] J. J. Hopfield and D. W. Tank, “Neural computation of decisions in

optimization problems,” Biolog. Cybern., vol. 52, pp. 141-152, 1985.

[14] D.W. Tank and J.J. Hopfield, “Simple neural optimization networks: an

A/D converter, signal decision network and a linear programming circuit”,

IEEE Trans. Circ. Syst., 33, pp. 533-541, 1986.

[15] H. Rauch and T. Winarske, “Neural networks for routing communication

traffic,” IEEE Control Syst. Mag., vol. 8, no. 2, pp. 26-31, 1988.

[16] A. A. Sharp, M. B. O’Neil, L. F. Abbott, and E. Marder, “Dynamic clamp:

computer-generated conductances in real neurons,” J. Neurophysiol. 3,

992–995, 1993.

[17] H. Fukai, S. Doi, T. Nomura, and S. Sato, “Hopf bifurcations in multiple-

parameter space of the Hodgkin-Huxley equations I: Global organization

of bistable periodic solutions,” Biological Cybernetics, 82, 215-222,

2000.

[18] M. L. Hines and N. T. Carnevale, “The NEURON simulation

environment.,” Neural Computation, 9:1179-1209, 1997.

[19] J. M. Bower, D. Beeman, and M. Hucka, “The GENESIS Simulation

System,” The Handbook of Brain Theory and Neural Networks, Second

edition, Cambridge, MA, MIT Press, 475-478, 2003.

[20] Tikk, D., Koczy, L. T., & Gedeon, T. D. (2003). “A survey on universal

approximation and its limits in soft computing techniques”. International

Journal of Approximate Reasoning, 33(2), 185–202.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 19, 2009 at 18:45 from IEEE Xplore. Restrictions apply.

