
Noname manuscript No.
(will be inserted by the editor)

A Case-Based Approach to Mobile Push-Manipulation

Tekin Meriçli · Manuela Veloso · H.
Levent Akın

Received: date / Accepted: date

Abstract The complexity of the potential physical interactions between the robot,
each of the pushable objects, and the environment is vast in realistic mobile push-
manipulation scenarios. This makes it non-trivial to write generic analytical motion
and interaction models or tune the parameters of physics engines for every robot,
object, and environment combination. We present a case-based approach to push-
manipulation that allows the robot to acquire, through interaction and observa-
tion, a set of discrete, experimental, probabilistic motion models (i.e. probabilistic
cases) for pushable passively-mobile real world objects. These probabilistic cases
are then used as building blocks for constructing achievable push plans to navigate
the object of interest to the desired goal pose as well as to potentially push the
movable obstacles out of the way in cluttered task environments. Additionally,
incremental acquisition and updating of the probabilistic cases allows the robot to
adapt to the changes in the environment, such as increased mass due to loading
of the object of interest for transportation purposes. The purely interaction and
observation driven nature of our method makes it robot, object, and environment
(real or simulated) independent, as we demonstrate through validation tests in a
real world setup in addition to extensive experimentation in simulation.

T. Meriçli
Department of Computer Engineering
Boğaziçi University
Bebek, 34342, Istanbul, Turkey
E-mail: tekin.mericli@boun.edu.tr

M. Veloso
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, United States
E-mail: veloso@cmu.edu

H. L. Akın
Department of Computer Engineering
Boğaziçi University
Bebek, 34342, Istanbul, Turkey
E-mail: akin@boun.edu.tr

2 Tekin Meriçli et al.

Keywords Mobile push-manipulation · experience-based mobile manipulation ·
mobile manipulation learning · mobile manipulation planning

1 Introduction

Depending on the requirements of the manipulation task and the constraints im-
posed by the physical properties of both the robot and the objects, it may not
always be possible to utilize prehensile manipulation techniques to solve the prob-
lem. In those cases, non-prehensile manipulation approaches [14], such as push-
manipulation, may be more suitable. This study investigates one such scenario as
our omni-directional mobile service robot CoBot [22] (Fig. 1(a)) is not equipped
with a manipulator arm. CoBot is expected to push-manipulate a set of passively-
mobile objects (Fig. 1(b)) in such a way to transport them to their desired poses
while avoiding collisions in task environments cluttered with both stationary and
potentially movable obstacles. This is not a trivial problem and it gets even more
challenging in our case due to the following facts:

– Our manipulable objects move on passive caster wheels as opposed to sliding
on high-friction surfaces and stopping immediately after the pushing is ceased.
This introduces additional motion uncertainty, rendering our objects of interest
inherently more difficult to push-manipulate.

– Considering the sophisticated contact properties of our objects of interest due
to their complex 3D structures, it is neither trivial nor feasible to build ana-
lytical interaction and motion models for each and every one of them. Hence,
traditional model-based planning approaches will not solve the problem in a
flexible and scalable way.

In [16–18], we presented a method that does not require any explicit ana-
lytical models for neither the objects nor the robot to be able to construct and

(a) (b)

Fig. 1 (a) CoBot push-manipulating an office chair. (b) Some of the realistically simulated
passively-mobile objects and the CoBot used as the pusher.

A Case-Based Approach to Mobile Push-Manipulation 3

execute push-manipulation plans. Rather, interactions of the robot with the ob-
jects and the resulting observations are used to build object-specific experimental
motion models, which are stored as cases similar to a case-based planning ap-
proach [30]. The acquired experimental models are then used as building blocks
for constructing safe and achievable push-manipulation plans. An experience-
based Rapidly-exploring Random Trees (RRT) variant planning algorithm we
contributed, namely Exp-RRT, is used to plan collision-free paths for the pri-
mary object of interest (OOI), whereas state lattice graphs are utilized to plan
how to push the movable obstacles out of the way. The constructed plans are then
executed by reiterating the corresponding pushing motions one after another while
actively monitoring the execution.

Having acquired experience about how several objects in its task environment
move in response to various pushes enables the robot to modify and rearrange the
task environment to fit its needs, which can be useful for easing the burden on the
future planning tasks. The complexity of the task environments can be reduced
considerably by treating every movable object as permeable while constructing
push plans for the primary OOI. The results of our experimental evaluation show
the advantage of being able to manipulate the obstacles in various scenarios.

We also demonstrate the advantage of having a purely interaction and observa-
tion driven case acquisition and tuning approach in adapting the past experience
to the novel situations, such as changes in the dynamics of the manipulated objects
due to loading/unloading, instead of having to go through the learning process all
over for each such novelty. Our experimental results show that, after adaptation,
the cases acquired for unloaded OOIs could be successfully used for manipulating
loaded ones, which have significantly different dynamics.

The following sections elaborate on the case-based push-manipulation method
we introduced in [16,17] and extended in [18] to lay the foundations for the pri-
mary contributions of this paper on improving push-manipulation planning and
execution performance, mainly through;

– treating the movable objects, which the robot knows how to push-manipulate,
as “permeable” in order to be able to construct more relaxed plans for the
primary OOI, knowing that those objects could be pushed out of the way,

– continuously updating, in a weighted manner, the stored cases based on the
most recent observations in order to be able to adapt to novel situations as well
as to achieve incremental improvements in the robustness of plan execution.

2 Related Work

Complex manipulation tasks can be achieved by utilizing the simple mechanics of
pushing in cases where the object is too bulky or heavy to lift, or the robot simply
lacks a manipulator arm. As a natural result of being one of the most interesting
and elegant methods used within the non-prehensile manipulation domain [14,8],
the problem of push-manipulation planning and execution has attracted several
robotics researchers. Here we review the most recent related studies.

Similar to the potential field based motion planners [9], the algorithm presented
in [7] computes dipole-like vector fields around the object to guide the motion of
the robot to get behind the object and push it towards the target. Robots with

4 Tekin Meriçli et al.

circular bumpers are used to push circular and rectangular objects of various sizes
in single and multi-robot scenarios. Relatively slow robot motions and high friction
for the objects are assumed to simplify the model. A promising method for han-
dling objects with more complex shapes is proposed in [11]. A robot with a simple
circular shape interacts with irregular-shaped flat objects with quasi-static prop-
erties to collect hundreds of samples on how the object moves when pushed from
different points in different directions. Using a non-parametric regression method
on this data, a mapping between the actions and the effects is built, similar to the
approach described in [31]. This method resembles ours as the observations on the
object’s motion in response to various pushing actions are utilized to model its
behavior instead of writing explicit analytical models for that purpose. A global
sampling-based planner is combined with a local randomized push planner in [33]
to explore various configurations of a polyflap and come up with a series of ma-
nipulator actions that will move the object to the intermediate global plan states.
The experiments are run in an obstacle-free tabletop setup and the state space
is limited to the reach of the robot arm, which is relatively small, as a station-
ary manipulator with a rigid fingertip is used as the pusher. The randomized local
planner utilizes a realistic physics engine to predict the object’s pose after a certain
pushing action, which requires explicit object modeling. Using the same problem
setup, an algorithm for learning through interaction the behavior of the manipu-
lated object that moves quasi-statically in response to various pushes is presented
in [10]; however, the learned object behavior is not used for push planning. The
observed outcomes of a limited set of four linear and two rotational pushes are
used in [24] for planning in a quasi-static tabletop setup where a manipulator
arm with a spherical rigid finger push-manipulates objects with simple geometric
shapes, ensuring single point of contact.

In scenarios where some of the obstacles in the task environment are movable, it
is usually advantageous to take their passive-mobilities into account when planning
for the primary object of interest. In handling movable obstacles, the Navigation
Among Movable Obstacles (NAMO) framework [26–28] contributes practical al-
gorithms, which globally reason about free space connectivity and identify which
objects to move as well as where to move them starting from the very beginning of
the planning process. Rigid grasps are used for pushing or pulling the movable ob-
stacles out of the way. The framework presented in [5] leverages push-manipulation
for rearranging the clutter in tabletop scenarios via single-step linear pushes to be
able to reach and grasp the target object as well as reducing the uncertainty prior
to grasping by utilizing the funneling effect of pushing.

From the perspective of learning through interaction and self exploration, our
work also resembles various work done in the domain of learning object affor-
dances [29,4]. It also aligns with the MOSAIC model presented in [32,6], which
is a general framework that integrates forward models into motor control with
the intention to learn inverse models for tasks, and how to select the appropriate
inverse model given a certain task.

According to our survey of the literature, the most common push-manipulation
scenarios seem to involve pushing of objects with primitive geometric shapes us-
ing circular or point-sized robots, or rigid fingertips on surfaces with relatively
high friction that makes the object stop immediately when the pushing motion is
ceased. Even then relatively complex mathematical models are used for contact
modeling and motion estimation, or physics engines of simulators are utilized for

A Case-Based Approach to Mobile Push-Manipulation 5

these purposes. Regarding planning among movable obstacles, the most relevant
studies either perform push-manipulation in quasi-static tabletop scenarios or uti-
lize grasping for moving the obstacles out of the way. Our approach differs from
many of these proposed ones as follows:

– The 3D real world objects we handle present complex contact properties as
they may contact the robot on various points (Fig. 2).

– We cannot assume that our objects would come to a stop immediately after
a push since they move on passive caster wheels, which contribute to their
motion uncertainty.

– We perform mobile push-manipulation in a large-scale environment cluttered
with static and movable obstacles, requiring construction and execution of safe
and achievable push plans.

– We do not build any explicit analytical models or learning based mappings; we
only utilize experimental models acquired by observing the effects of various
pushes for planning and execution.

– Our approach allows push-manipulation among movable obstacles as our robot
can push them out of the way in case a potential collision is anticipated during
the manipulation of the primary OOI.

– Our robot can adapt the acquired experimental models to the observed changes
in the environment, such as changes in the dynamics of the OOI due to load-
ing/unloading, hence apply past experience to solve novel problems quickly.

3 Experience-based Push-Manipulation

Robots should ideally learn and further sharpen their manipulation and corre-
sponding prediction-based planning skills by interacting with their environment
and observing the outcomes as it is not trivial, efficient, and scalable to define
analytical interaction and motion models for each and every object that we expect
the robot to manipulate. For these reasons, we let our robot experiment with the
pushable objects either through self-exploration or demonstration via joysticking,
and observe how they move in response to various pushes. These observations are

(a) (b) (c)

Fig. 2 The object may contact (indicated by a red arrow) the robot on its (a) body, (b)
basket, or (c) base, or a combination of these depending on its 3D structure and the pushing
direction, making it non-trivial to model explicitly.

6 Tekin Meriçli et al.

then turned into experimental models, or cases analogous to a Case-Based Rea-
soning/Planning (CBR/P) system [1,25], to be used for planning and execution.

Our algorithm consists of the following components:

– A set of object-specific probabilistic cases represented as sequences composed of
the robot’s motion commands, its resulting active trajectory, and the object’s
corresponding passive trajectory, together with a distribution representing the
uncertainty in the object’s motion,

– A generative planner that makes use of these probabilistic cases as building
blocks to construct achievable and collision-free push plans,

– An execution monitoring module to cease execution and trigger re-planning
whenever there is a significant discrepancy between the expected and the actual
motion of the object during plan execution.

3.1 Object-Specific Probabilistic Cases

Each individual interaction of the robot with the OOI is stored as a sequence of
pose-action pairs for the robot and the corresponding poses for the OOI, repre-
senting their active and passive trajectories, respectively. A static global frame of
reference, ϕG, is attached to the environment. The poses of the robot and the OOI
within ϕG are denoted as ϕR and ϕO, respectively. We also define an auxiliary
frame of reference, ϕS , to indicate the last stationary pose of the OOI before it
starts being pushed (Fig. 3(a)).

Let ℘R be ϕR w.r.t. ϕO, and ℘O be ϕO w.r.t. ϕS , both of which are denoted
as 〈x, y, θ〉. Invariance to ϕO is achieved by recording ℘R together with the motion
command at that moment and the corresponding ℘O. Therefore, a sequence Si of
length l in a set of sequences So associated with an OOI takes the form,

Si : ((℘R0
, a0, ℘O0

), . . . , (℘Rl−1
, al−1, ℘Ol−1

)), i ∈ [1, |So|]

where aj is the action associated with ℘Rj , denoted as 〈vx, vy, vθ〉 indicating the
omni-directional motion command composed of the translational and rotational
velocities of the robot. Fig. 3(b) provides the visualization of the robot and ob-
ject trajectories within the stored sequences. The transparent, scaled-down robot
figures indicate the push initiation poses (i.e. ℘R0

of each sequence) whereas the
scaled-down object figures indicate the mean observed poses of the object after
the pushes (i.e. ℘Ol−1

of each sequence). The robot trajectory (indicated by green
curves) and the object trajectory (indicated by red curves) that belong to the same
sequence are marked with the same ID value. Final object pose uncertainty is de-
picted with the yellow ellipses drawn around the mean final poses. This is what
makes our cases probabilistic ones as the output has uncertainty. The process of
acquiring these experimental models is elaborated in Section 3.2.

3.2 Experimentally Acquiring Probabilistic Cases

When the robot is to acquire experience about a given pushable object through
self-exploration, it determines m random push initiation locations ℘R0

relative
to and immediately around the object together with the corresponding random
pushing durations τ ranging from 1 to 3 seconds. We name these tuples push

A Case-Based Approach to Mobile Push-Manipulation 7

(a) (b)

Fig. 3 (a) Various reference frames used during sequence recording and replay depicted before
(t = ts) and after (t = te) a push. (b) Visualization that corresponds to the scene shown in the
upper left corner of the image. The robot trajectory and the corresponding object trajectory
components of 7 different probabilistic cases are illustrated.

configurations, ς = {ς0, . . . , ςm−1}, ςi : (℘R0
, τ), which are used to carry out the

premier pushes on the OOI. On the other hand, we can also demonstrate the robot
more sophisticated and informative pushing motions for the given objects via the
use of a joystick. In either case, a new sequence is created and saved whenever
the robot tries a particular push for the first time. The additional practices are
merely reiterating of these newly learned sequences to update the parameters of
the distributions associated with each of them to represent the uncertainty in the
observed final pose of the relevant object after a push. We approximate those
distributions with 3-dimensional Gaussians based on the analysis of the actual
relative final pose data of one of the sequences logged during push execution [18].

After each reiteration of Snewi for modeling uncertainty, the corresponding
distribution parameters are incrementally updated according to Eq. 1 and Eq. 2,
based on our Gaussian approximation.

℘̄Of
t

= ℘̄Of
t−1

+
℘Of

t
− ℘̄Of

t−1

t
(1)

Σ℘
O

f
t

=

(t− 1)Σ℘
O

f
t−1

+ (℘Of
t
− ℘̄Of

t
)(℘Of

t
− ℘̄Of

t−1
)T

t
(2)

In these equations, ℘̄Of
t

denotes the mean of the observed final object pose after

the tth trial for a specific Snewi , where t ∈ [1, n], and Σ℘
O

f
t

is the corresponding

covariance, which in our case is a 3× 3 matrix as we are dealing with 3 DoF poses
in the form of 〈x, y, θ〉. This compact representation eliminates the need for storing
all of the previously observed individual poses.

Similarly, it would be possible to update the object trajectories themselves by
aligning them with the recently experienced ones using a Dynamic Time Warping
(DTW) [23] approach, and computing the mean object trajectory accordingly.

8 Tekin Meriçli et al.

However, since the object trajectories are relatively short and the obstacles in the
environment are large, it is plausible to assume that the trajectories observed at
the very beginning of the learning process are decent representatives of the future
ones. This assumption simplifies the computational complexity of the proposed
method while not degrading the overall performance of the system significantly.

3.3 Achievable Push-Manipulation

The experimentally acquired probabilistic cases present primitives that can be
used for building various kinds of graphs to search for the path to the requested
goal pose in the task environment. In order to maintain a small computational
footprint, we take a sampling-based approach to planning the push-manipulation
path for the primary OOI. We modify the original Rapidly-exploring Random
Tree (RRT) algorithm [12,13] and use the previously acquired probabilistic cases
as building blocks for constructing the tree [17,18]. Since the probabilistic cases
encode the motion of both the robot and the OOI together with the associated
uncertainty, using them to construct the push plan ensures achievability from both
the robot’s and the OOI’s perspective in terms of motion feasibility and collision-
safety. Our contributed experience-based RRT (Exp-RRT) algorithm is given in
Algorithm 1.

Algorithm 1 The Exp-RRT algorithm.

1: function BuildExpRRT(ooi, qinit, qgoal)
2: Tree← qinit; . set the root of the tree as the initial configuration
3: qnew ← qinit;
4: while sim(qnew, qgoal) < THRESHOLD do . while the goal is not reached
5: qrand ← Sample(); . sample a random configuration
6: qmost similar ← MostSimilar(Tree, qrand);
7: qnew ← Extend(ooi, qmost similar, qrand);
8: Tree.add(qnew); . add the new configuration to the tree
9: end while

10: return Trajectory(Tree, qnew); . return solution
11: end function
12: function MostSimilar(Tree, qtarget) . find “most similar” configuration
13: return arg maxq∈Tree sim(q, qtarget);
14: end function
15: function Extend(ooi, qsource, qtarget) . extend using the best sequence
16: Strans ← {Transform(Si, qsource)}∀Si ∈ ooi.S;
17: Ssafe ← {Strans \ {Colliding(St)}}∀St ∈ Strans;
18: return arg maxSi.qf∀Si∈Ssafe

sim(Si.q
f , qtarget);

19: end function

At each iteration, we sample a random pose, 〈x, y, θ〉, with probability p or use
the goal as the sample with probability 1− p. The closest node of the tree to the
new sample is the one that gives the maximum similarity value according to the
similarity function defined in Eq. 3,

sim(p1, p2) =
dmax

dist(p1, p2)
cos(p1.θ − p2.θ) (3)

A Case-Based Approach to Mobile Push-Manipulation 9

where dmax is the maximum possible distance that can be obtained in the task
environment and dist(p1, p2) is the Euclidean distance between the locations of
the poses. Therefore, the closer the locations of the two poses and the smaller the
angular difference between their orientations, the more similar they are. After the
closest node to the sample is determined, imagining the OOI to be on the pose of
the closest node, this time the final expected poses of the sequences originating
from that imaginary pose are checked against the sample according to the simi-
larity function defined in Eq. 3. The tree is extended towards the sample by using
the final projected object pose of the sequence that gives the highest similarity
value and is collision-free for both the object and the robot. This process is re-
peated until the pose of the newly added node falls within predefined distance and
orientation difference limits to the goal pose.

Taking uncertainty into account during RRT planning has been studied in the
literature [15,2]; however, we do it for the manipulated objects instead of the
robot itself in addition to performing it in a novel way. For this purpose, we derive
2L+ 1 sigma points representing the extremes of the final pose distributions from
the mean and the covariance using Eq. 4-6, where L is the dimensionality of the
state space. In our case L = 3 as we are dealing with 3 DoF poses.

χ0 = ℘̄Of (4)

χi = ℘̄Of + ζ(
√
Σ℘

O
f
n

)i, i = 1, . . . , L (5)

χi = ℘̄Of − ζ(
√
Σ℘

O
f
n

)i, i = L+ 1, . . . , 2L (6)

In these equations, ℘̄Of is the mean of the final OOI poses observed so far for

a particular sequence, (
√
Σ℘

O
f
n

)i is the ith column of the matrix-square-root of

the covariance matrix Σ℘
O

f
n

, and ζ is the scalar scaling factor that determines the

spread of the sigma points around ℘̄Of . Increasing ζ increases the conservativeness
of the planner. That is, since the push plans are constructed out of the sequences,
and the corresponding distributions as well as the object and robot trajectories
are used for collision checking, the value of ζ has an indirect effect on adjusting
the minimum allowed distance of the planned paths from the obstacles. In our
experiments, we used ζ = 3. Each of the extreme poses represented by the sigma
points are checked for collision and the case is marked as unachievable and not
used for extending the tree if any of these poses are in collision with the objects in
the environment (Fig. 4). After the push plan is constructed for the OOI, during
plan execution, a standard RRT planner is used for moving the robot to ℘R0

of
the corresponding robot trajectories of the sequences along the push plan.

The constructed push plan is executed by replaying one after another the robot
trajectories of the chain of sequences that transports the OOI to the desired pose.
Even though the plan is constructed by taking into account the uncertainties in
the expected final OOI poses, the object inevitably digresses from its foreseen
path, especially when it needs to be transported for a long distance. In such cases,
re-planning is triggered if the result of the hypothesis test indicates statistically
significant difference between the expected object pose and the observed one. 1

1 A video showing the simulated robot push-manipulating an overbed table can be seen
here: http://youtu.be/rN22PSjsniY

10 Tekin Meriçli et al.

Fig. 4 The sigma points, illustrated as scaled-down OOI figures, indicate the extreme poses
(i.e. the extreme points on the corresponding distribution) that could be observed after a push.

4 Push-Manipulation Among Movable Obstacles

The robot may take advantage of its experience about the other pushable objects
in the environment to ease the burden of manipulation planning and execution for
the primary OOI. As the robot would know how to push-manipulate them, all the
known movable objects in the task environment can essentially be treated as per-
meable during push plan construction for the primary OOI, allowing the solution
paths to pass through them. Before executing each push along the constructed
push plan, the robot checks whether the action would potentially result in a col-
lision with any of the movable obstacles. In case a collision is anticipated, a state
lattice graph [20,21] is expanded for each of the involved movable obstacles. Since
we do not know where to push the obstacle ahead of time, full graph construction
until candidate collision-free configurations are found is a more suitable approach
than using Exp-RRT, which would require a particular goal to be specified. Full
planning graphs are expanded by using the relevant probabilistic cases as building
blocks until collision-free poses for the movable obstacles are reached.

Fig. 5 illustrates a single branch expansion in the process of state lattice con-
struction for the overbed table object. As opposed to various applications of the
state lattices in the literature, we have no concerns regarding the continuity of the
successive motion primitives as our primitives represent discrete achievable mo-
tions of the OOI, not the robot. Therefore, none of the cases are eliminated during
graph construction, except for the ones that are in collision with the environment.
Among the set of candidate paths that first reach collision-free configurations, the
one that pushes the obstacle farthest from the OOI’s path as well as all the other
obstacles is selected for execution. The push plan for the OOI is ceased until all the
immediately blocking movable obstacles are pushed out of the way according to
the generated plan, and it is resumed when the primary path is clear. Fig. 6 shows
the stages of movable obstacle clearance during push-manipulation of a stretcher. 2

Even though we cannot claim that our approach to handling push-manipulation
among movable obstacles produces optimal plans and results, our experiments
demonstrate its practicality as we never observed a failure in our test scenarios.

2 A video showing experience-based push-manipulation among movable obstacles can be
seen here: http://youtu.be/8YSjWfMuJZo

A Case-Based Approach to Mobile Push-Manipulation 11

Fig. 5 The construction of the state lattice is achieved by repeating the set of probabilistic
cases at the end of every individual case in a breadth-first manner.

(a) (b)

(c) (d)

Fig. 6 Clearing movable obstacles along the path of the stretcher. (a) First the stretcher is
push-manipulated until a collision is anticipated. (b) The chair is pushed out of the way. (c)
The overbed table is cleared after resuming the original push plan and navigating the stretcher
a little further. (d) The original push plan for the stretcher is resumed.

12 Tekin Meriçli et al.

5 Adapting Past Experience to Novel Situations

After the initial learning period, the acquired probabilistic cases are usually reliable
enough to push-manipulate the known OOIs within the environment successfully,
requiring re-planning every once in a while during task execution. However, espe-
cially considering that all of our potential OOIs are instances of office, hospital, and
service furniture, their occupation state, and hence dynamics, may change from
time to time as they are mainly intended for transporting various loads. Fig. 7
depicts such a scenario, where the overbed table is loaded with several objects of
unknown masses. This addition to the object changes its dynamics and it starts
behaving differently than expected, as illustrated in the figure. Even in such cases
where the OOIs are loaded with other objects, we would still like to be able to
make as much use of the past experience as possible to solve the novel problem
without having the go through the learning process all over again.

Fig. 7 A large difference is observed between the expected pose and the realized one when
the loaded OOI is tried to be push-manipulated using the past experience obtained from the
unloaded OOI. However, the robot can incrementally adapt the corresponding cases to these
new observations instead of trying to learn a completely new set of cases for the loaded OOI.

To achieve that, we seek a way of modifying the available distributions to
quickly accommodate for the difference between the expected and the observed
object behavior. However, since the parameters of the distributions associated
with individual cases are updated incrementally after each trial during case ac-
quisition, the latest observations start becoming less and less effective in shaping
the distributions as the number of practices per case increases. We overcome this
problem by introducing a weighting factor to determine how much relative weight
the distributions representing the past experience should have over the newly ac-
quired experience. This weight coefficient is computed by evaluating the difference
between the expected and the observed pose of the object via the pose similarity
function defined in Eq. 3 and multiplying the obtained value with a scaling factor
K, as defined in Eq. 7. In our experiments, we set the value of K to be equal to the
number of initial practices for each of the sequences, that is K = 20. The obtained
weight is used for adjusting the influence of the past distribution defined by ℘̄Of

t−1

and Σ℘
O

f
t−1

, as shown in Eq. 8 and Eq. 9. That is, if the difference between the

expected pose and the observed one is significant, then their similarity value will
be small, resulting in a decrease in the weight of the past distribution parame-

A Case-Based Approach to Mobile Push-Manipulation 13

ters, allowing them to quickly shift towards the new observation. Otherwise, these
updates will have a similar effect as the ones performed by the original equations
given in Eq. 1 and Eq. 2.

W = sim(pexpected, pobserved)K (7)

℘̄W
Of

t−1

= W℘̄Of
t−1

(8)

ΣW℘
O

f
t−1

= WΣ℘
O

f
t−1

(9)

In addition to handling drastic changes in the OOI’s dynamics, it is also pos-
sible to utilize the flexibility of our incremental learning approach to enable the
robot to continuously learn and adapt by updating the parameters of the corre-
sponding distributions after each push during regular task execution.

6 Experimental Evaluation

We performed the majority of our experiments in Webots simulation environ-
ment [19] while validating the feasibility of the underlying method in a real world
scenario [18] (Section 6.1.1). The final placement of an OOI was considered suc-
cessful if the distance of the object to the desired goal was below 0.2m and the
orientation difference was below π/9 radians. These constraints are quite tight con-
sidering the dimensions of the objects that our robot is manipulating, such as a
0.8m×0.45m utility cart and a 1.9m×0.9m stretcher manipulated in a 15m×15m
environment. Given the acceptable final location and orientation difference thresh-
olds, if we were to construct an 〈x, y, θ〉 grid over the entire task environment, we
would have a total of (15.0/0.2)2 〈x, y〉 locations with 9 different orientation values
at each location. Therefore, the maximum number of Exp-RRT nodes was set to
be 9 ∗ (15.0/0.2)2 = 50625 based on the task constraints. We sampled a random
pose with probability p = 0.05 and the goal pose with probability 1− p = 0.95.

It must be noted that the simulation environment is essentially a black box for
the robot, as the real world would be, and the only information that the simulator
provides to the robot is the poses of the objects. It is a black box for us as well.
In addition to the object meshes for visualization, we only provide empirically
determined mass values and wheel friction coefficients for the ODE physics engine
of the simulator to take care of the inter-object interactions to make them behave
reasonably realistically. The only motivation behind using a realistic 3D simulator
is to obtain a setup that “looks” an “behaves” reasonably realistically as we are not
concerned with transferring any knowledge from the simulated environment to the
real world or vice versa. In other words, both the internal and external parameters
of the simulator are totally irrelevant to the operation of our method. Therefore,
even if we had not set the physics parameters realistically, the method would
still work and learn how to push-manipulate objects under those circumstances,
which makes it totally independent of the robot, the object, and the environment
(simulated or real).

14 Tekin Meriçli et al.

6.1 Evaluation of the Underlying Method

The aim of our first experiment was to understand how the number of practices
per sequence (corresponding to the n in Eq. 1 and Eq. 2) affects the robustness of
the constructed push plan, measured in the number of re-plans performed during
execution. We used the chair as the primary OOI and utilized the set of 7 sequences
illustrated in Fig. 3(b). The desired goal pose was approximately 4m away diago-
nally, which corresponds to an average of 12 pushes with the available set of cases.
Starting from a minimum of 5 practices per sequence, with an increment of 5, we
tried up to 20 practices per sequence, and performed 10 planning and execution
experiments with each of these values. Fig. 8 shows the results, where a general
tendency (indicated with the green curve) of decreasing number of re-plans can be
observed. Given the average path length of 12, almost 3 consecutive pushes can
be achieved before re-planning in case of 20 practices per sequence, whereas that
number is below 2 for the case of 5 practices per sequence.

Fig. 8 The number of re-plans during task execution decreases with the increasing number
of practices per individual case. This tendency illustrated by the green curve is an indicator of
the corresponding distributions becoming more stable and reliable in their predictive abilities.

Fig. 9 The number of cases versus plan success rate for 10 random goals. The general tendency
is towards an increased plan success rate with the increasing number of cases.

A Case-Based Approach to Mobile Push-Manipulation 15

The second experiment we performed was to see the effect of the number,
hence the variety, of the cases in solving various planning problems. For that
purpose, we created 10 random goal configurations scattered around the cluttered
task environment. Again using the chair as the primary OOI, we started from 5
cases (i.e. sequences) and went all the way up to 14 cases with increments of 1.
Artificially limiting the maximum number of allowed Exp-RRT nodes to 2000, for
each number of cases, we performed 10 planning experiments for each of the 10
random goals and measured whether the planner succeeded (1 for success and 0
for failure) and if so how many nodes it had to expand before reaching the goal.
We obtained a success rate value by counting the number of successes after each
set of 10 experiments per goal and dividing the sum to the number of experiments
(i.e. 10). Fig. 9 illustrates how the plan success rate changes for each of the 10
goals with the increasing number of cases. The figure shows a general tendency
towards an increasing success (i.e. reachability) rate for each goal as the number
of cases increases. Out of the last two goals where the robot performed the poorest
in terms of planning, one of them was at the opposite corner of the environment
with many obstacles in between, and the other one was within close proximity of
another obstacle, which made it difficult for the robot to generate a collision-free
placement plan for these goal configurations.

Fig. 10 The number of cases versus the number of expanded Exp-RRT nodes. The general
tendency is towards a reduced number of Exp-RRT nodes with the increasing number of cases.

Fig. 10 visualizes the second measurement in the same experiment scenario,
which is the average number of expanded Exp-RRT nodes during the 10 exper-
iments performed for each of the goals. It can be observed that, for each goal,
the number of nodes tends to decrease with the increasing number of cases, which
means that a solution can be found quicker with a richer set of cases.

6.1.1 Real World Validation

In order to validate our underlying method in terms of its robot, object, and envi-
ronment (i.e. real or simulated) independence, we also ran a preliminary real world
test in addition to the extensive experimentation we performed in simulation [17,
18]. In this test, our CoBot robot [22] was asked to arrange a set of chairs in a

16 Tekin Meriçli et al.

desired seating formation around a round table. Due to the abundance of uncer-
tainty in the real world, it becomes difficult to construct a stable world model. In
the physical setup, the robot’s global pose information comes from the localization
module [3] and the OOI is perceived through the Augmented Reality (AR) tags
placed on it, both of which result in noisier information compared to the perfect
ones received in simulation. It also becomes important to employ good trackers so
that the robot can still have an idea of where the object is even if it is not visible
within the robot’s field of view.

During our preliminary tests, the robot was, in general, able to construct a
relatively stable world model by combining its perception with its localization in-
formation to generate and execute push-manipulation plans 3. Even though we
have not performed detailed experiments in this setup, we observed that there
was an overall increase in the frequency of re-planning due to the increased uncer-
tainty in both perception and action in real world. These preliminary tests verified
the validity of our method and demonstrated its robot, object, and environment
independence as the exact same codes are run on the physical robot as on the
simulated one. The only pieces of information used were the robot’s localization
belief and the pose of the object of interest that the robot itself extracted from
the perceived AR tags.

6.2 Handling Movable Obstacles

We ran two sets of experiments to evaluate the benefits of the method we propose
for handling and utilizing the movable obstacles in the task environment.

Table 1 Task completion statistics for stationary and movable obstacle configurations.

Obstacle configuration µ (sec) σ (sec) # replans

Stationary (Scenario 1) 187.5 47.33 8
Movable (Scenario 2) 92.05 17.29 5

Initially excluding the execution part, we first tried to understand how such ca-
pability influences planning performance. We created 5 random test environments
in simulation and ran 30 planning trials in two different scenarios. In Scenario 1,
all the obstacles were treated as stationary whereas in Scenario 2, some of the
obstacles were considered as movable. We observed that planning time is consider-
ably improved in Scenario 2 as a result of many of the planning constraints being
eliminated. As Fig. 11 shows, both the means and the variances of the various per-
formance metrics obtained in Scenario 2 (cyan) are considerably lower than those
obtained in Scenario 1 (red). The results are intuitive since the planner needs more
effort to find potentially more tortuous solution paths that avoid all the obstacles
in Scenario 1, which explains longer planning times and path lengths.

In the second set of experiments, we additionally tested the task completion
times (i.e. both planning and execution) in a random test environment by running
10 trials for each of the two scenarios. Table 1 shows a significant difference between

3 A video of the real robot performing experience-based push manipulation [17,18] can be
seen here: http://youtu.be/TORQdBPHJ3g

A Case-Based Approach to Mobile Push-Manipulation 17

(a) Total number of Exp-RRT nodes.

(b) The length of the solution path.

(c) Planning time.

Fig. 11 Planning performance in the presence of movable obstacles measured in terms of the
total number of Exp-RRT nodes, the solution path length, and planning time.

the average task completion times as well as the number of re-plannings during
the navigation of the primary OOI, which, in this case, was an overbed table.

6.3 Continuous Adaptation and Experience Transfer

Our last experiment investigates how the ability to continuously adapt to the
changes regarding the primary OOI (e.g. loaded versus unloaded) affects robust
plan execution measured in the number of consecutive pushes before a re-plan is
needed. The simulated overbed table was used as the primary OOI and the desired

18 Tekin Meriçli et al.

Fig. 12 Continuous adaptation to the observed changes contributes significantly to the robust
execution of the generated plans, both under occupation state changes (left) and during regular
operation (right). Median number of consecutive pushes are given at the top.

goal pose was placed approximately 10m away diagonally, which corresponds to
an average of 25 pushes with the available set of cases. The cases were acquired on
the unloaded overbed table, and the robot was expected to adapt and utilize them
for push-manipulating the loaded one, which has significantly different dynamics
as shown in Fig. 7. Adaptation was performed on the fly during plan execution
with the hope that the execution would become more robust after each re-planning
attempt. Fig. 12 clearly shows that continuous adaptation enables the cases learned
on an unloaded OOI to be adapted and used on a loaded one (the left part of the
plot) as well as improving the performance during plan execution in the original
unloaded OOI manipulation scenario (the right part of the plot). The first box
in the plot shows that the robot pretty much had to re-plan after each push
when it tried manipulating a loaded overbed table using the cases acquired on the
unloaded one. The second box depicts the performance improvement in the case of
continuous adaptation, where an average of more than 2 pushes could be achieved
by adapting the cases to the novel situation. This is noteworthy considering that
the robot had to adapt to the new dynamics on the fly in the course of an average
of just 25 pushes in total. It was observed that the robot was able to adapt a
particular probabilistic case to a novel situation after 2 iterations on average.

7 Conclusion

The vast complexity of the potential physical interactions between the robot, each
of the pushable objects, and the environment in realistic push-manipulation scenar-
ios makes it non-trivial to write generic analytical motion and interaction models
or tune the parameters of physics engines for every possible robot, object, and
environment combination. We address this problem by introducing a case-based
push-manipulation approach that enables the robot to acquire, through interaction
and observation, a set of discrete, experimental, probabilistic motion models (i.e.
probabilistic cases) for pushable passively-mobile real world objects. The robot
then constructs achievable push plans out of these acquired probabilistic cases to
navigate the object of interest to the desired goal pose as well as to potentially push
the movable obstacles out of the way in cluttered task environments. Additionally,

A Case-Based Approach to Mobile Push-Manipulation 19

incremental acquisition and updating of the probabilistic cases allows the robot
to adapt to the changes in the dynamics of the objects when continually used af-
ter the initial case acquisition phase. As demonstrated through some preliminary
tests in a real world setup in addition to extensive experimentation in simula-
tion, our method proves to be robot, object, and environment (real or simulated)
independent due to its purely interaction and observation driven nature.

Even though we present a relatively rich set of experimental results in various
task setups and scenarios, there still remains a lot of room for further research as
well as improvements to the present method. Potential future work includes;

– incorporating Dynamic Time Warping based alignment and adjustment of the
successively observed object trajectories to track variance not only over the
final object pose but also along the trajectories,

– investigating the potential benefits of propagating uncertainty through the
plan graph over our current optimistic approach of keeping the distributions
of consecutive push results independent from each other,

– exploring the construction of deterministically optimal paths for the primary
object of interest through the utilization of a state lattice planner and com-
paring the performance against the Exp-RRT,

– performing skill transfer among different objects with similar physical proper-
ties in addition to adapting to the changes occurring on the same object,

– evaluating the presented methods through extensive testing and detailed ex-
perimentation in a physical setup in the presence of movable obstacles and
varying object dynamics.

References

1. Bartsch-Spörl, B., Lenz, M., Hübner, A.: Case-Based Reasoning - Survey and Future Di-
rections. In: Proceedings of the 5th German Biennial Conference on Knowledge-Based
Systems, pp. 67–89. Springer Verlag (1999)

2. Berg, J.V.D., Abbeel, P., Goldberg, K.: LQG-MP: Optimized Path Planning for Robots
with Motion Uncertainty and Imperfect State Information. In: Proceedings of Robotics:
Science and Systems (RSS). Zaragoza, Spain (2010)

3. Biswas, J., Coltin, B., Veloso, M.: Corrective Gradient Refinement for Mobile Robot Local-
ization. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (2011)

4. Şahin, E., Çakmak, M., Doğar, M.R., Uğur, E., Üçoluk, G.: To Afford or Not to Afford:
A New Formalization of Affordances Toward Affordance-Based Robot Control. Adap-
tive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Systems 15(4),
447–472 (2007). DOI 10.1177/1059712307084689. URL http://dx.doi.org/10.1177/
1059712307084689

5. Dogar, M., Srinivasa, S.: A Planning Framework for Non-Prehensile Manipulation under
Clutter and Uncertainty. Autonomous Robots 33(3), 217–236 (2012)

6. Haruno, M., Wolpert, D.M., Kawato, M.M.: MOSAIC Model for Sensorimotor Learn-
ing and Control. Neural Computation 13(10), 2201–2220 (2001). DOI 10.1162/
089976601750541778. URL http://dx.doi.org/10.1162/089976601750541778

7. Igarashi, T., Kamiyama, Y., Inami, M.: A Dipole Field for Object Delivery by Pushing
on a Flat Surface. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA) (2010)

8. K. M. Lynch and M. T. Mason: Dynamic nonprehensile manipulation: Controllability,
planning, and experiments. International Journal of Robotics Research 18, 64–92 (1997)

9. Khatib, O.: Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The
International Journal of Robotics Research 5(1), 90–98 (1986)

20 Tekin Meriçli et al.

10. Kopicki, M., Zurek, S., Stolkin, R., Mörwald, T., Wyatt, J.: Learning to predict how rigid
objects behave under simple manipulation. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA) (2011)

11. Lau, M., Mitani, J., Igarashi, T.: Automatic Learning of Pushing Strategy for Delivery
of Irregular-Shaped Objects. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA) (2011)

12. LaValle, S.M.: Rapidly-Exploring Random Trees: A New Tool for Path Planning. Tech.
rep., Computer Science Department, Iowa State University (1998)

13. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)
14. Lynch, K.M.: Nonprehensile Robotic Manipulation: Controlability and Planning. Ph.D.

thesis, Robotics Institute, Carnegie Mellon University (1996)
15. Melchior, N., Simmons, R.: Particle RRT for Path Planning with Uncertainty. In: 2007

IEEE International Conference on Robotics and Automation, pp. 1617–1624 (2007)
16. Meriçli, T., Veloso, M., Akın, H.L.: Experience Guided Achievable Push Plan Generation

for Passive Mobile Objects. In: Beyond Robot Grasping - Modern Approaches for Dynamic
Manipulation, IROS’12 (2012)

17. Meriçli, T., Veloso, M., Akın, H.L.: Achievable Push-Manipulation for Complex Passive
Mobile Objects using Past Experience. In: Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS) (2013)

18. Meriçli, T., Veloso, M., Akın, H.L.: Push-Manipulation of Complex Passive Mobile Objects
using Experimentally Acquired Motion Models. Autonomous Robots pp. 1–13 (2014).
DOI 10.1007/s10514-014-9414-z. URL http://dx.doi.org/10.1007/s10514-014-9414-z

19. Michel, O.: Webots: Professional Mobile Robot Simulation. Journal of Advanced Robotics
Systems 1(1), 39–42 (2004)

20. Pivtoraiko, M., Kelly, A.: Constrained Motion Planning in Discrete State Spaces. In: Field
and Service Robotics, pp. 269–280 (2005)

21. Pivtoraiko, M., Kelly, A.: Efficient Constrained Path Planning via Search in State Lattices.
In: Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and
Automation in Space (2005)

22. Rosenthal, S., Biswas, J., Veloso, M.: An Effective Personal Mobile Robot Agent Through
Symbiotic Human-Robot Interaction. In: Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS) (2010)

23. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recog-
nition. Acoustics, Speech and Signal Processing, IEEE Transactions on 26(1), 43–49 (1978)

24. Scholz, J., Stilman, M.: Combining motion planning and optimization for flexible robot
manipulation. In: Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International
Conference on, pp. 80–85 (2010)

25. Spalazzi, L.: A Survey on Case-Based Planning. Artificial Intelligence Review 16, 3–36
(2001)

26. Stilman, M.: Navigation Among Movable Obstacles. Ph.D. thesis, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA (2007)

27. Stilman, M., Kuffner, J.J.: Navigation Among Movable Obstacles: Real-time Reasoning
in Complex Environments. International Journal of Humanoid Robotics 2(04), 479–503
(2005)

28. Stilman, M., Nishiwaki, K., Kagami, S., Kuffner, J.: Planning and Executing Navigation
Among Movable Obstacles. In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 820–826 (2006)

29. Uğur, E., Öztop, E., Şahin, E.: Goal emulation and planning in perceptual space us-
ing learned affordances. Robotics and Autonomous Systems 59(7–8), 580 – 595 (2011).
DOI http://dx.doi.org/10.1016/j.robot.2011.04.005. URL http://www.sciencedirect.
com/science/article/pii/S0921889011000741

30. Veloso, M.M.: Planning and Learning by Analogical Reasoning. Springer Verlag (1994)
31. Walker, S., Salisbury, J.K.: Pushing Using Learned Manipulation Maps. In: Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA) (2008)
32. Wolpert, D.M., Kawato, M.: Multiple Paired Forward and Inverse Models for Motor Con-

trol. Neural Networks 11(7-8), 1317–1329 (1998). DOI 10.1016/S0893-6080(98)00066-5.
URL http://dx.doi.org/10.1016/S0893-6080(98)00066-5

33. Zito, C., Stolkin, R., Kopicki, M., Wyatt, J.: Two-level RRT Planning for Robotic Push
Manipulation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2012)

