
International Journal of Advanced Robotic Systems

Improving Prehensile Mobile
Manipulation Performance through
Experience Reuse
Regular Paper

Tekin Meriçli1,?, Manuela Veloso2 and H. Levent Akın1

1Department of Computer Engineering, Bogazici University, Istanbul, Turkey
2Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
? Corresponding author E-mail: tekin.mericli@boun.edu.tr

Received D M 2014; Accepted D M 2014

DOI: 10.5772/chapter.doi

© 2014 FIRST AUTHOR; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Abstract During pick and place tasks, a mobile
manipulator performs recurring relative moves within
the close proximities of the object of interest and
the destination independent of their global poses.
These moves are usually critical to the success of the
manipulation attempt and hence need to be executed
delicately. Considering the critical yet recurring nature
of these moves, we let the robot memorize them as
state-action sequences and reuse them whenever possible
to guide manipulation planning and execution. When
combined with a sampling-based generative planner,
this guidance helps reduce planning time by deliberately
biasing the planning process towards the feasible
sequences. Additionally, monitoring the execution while
reiterating the reached sequences improves task success
rate. Our experiments show that this complementary
combination of the already available partial plans and
executions with the ones generated from scratch yields to
fast, reliable, and repeatable solutions.

Keywords Experience-guided manipulation planning,
mobile manipulation

1. Introduction

Majority of the activities that are performed in everyday
living contexts are instances of pick and place tasks. These

types of tasks usually require careful planning and delicate
execution as the manipulator has to be finely aligned
with the object of interest (OOI) during pick up and
the destination during placement. However, depending
on the constraints of the tasks and the complexity of
the task environments, even the state-of-the-art planners
may require significant amount of time and computational
resources to generate trajectories that will yield successful
executions. On the other hand, careful observation of
the recurring pick and place actions that take place in
everyday scenarios led to the following conclusions, which
motivated the ideas behind our contribution:

1. Reaching towards the OOI and/or the destination
is usually done as directly, roughly, and quickly as
possible. The most critical parts of a manipulation task
are the moves performed within close proximities of
the OOI prior to pick up or the destination prior to
placement, and they need to be executed delicately.

2. Even though there could be infinitely many ways of
picking up or placing an object, the general tendency
is to repeat a finite and discrete number of alternatives
for finely approaching a particular OOI and/or its
destination. For example, a bottle is grasped from the
side or on its cap, a mug is grasped from the side or on
its handle, or a chair is usually grabbed from its back.

www.intechopen.com Int J Adv Robotic Sy, 2014, Vol. No, No:2014 1

http://creativecommons.org/licenses/by/3.0

(a) The omni-directional mobile manipulator robot and several manipulable
hospital and office objects used in the experiments.

(b) A random simulated task environment cluttered with various
manipulable objects, stationary obstacles, and furnitures.

Figure 1. The omni-directional mobile robot capable of
manipulating several hospital and office objects (a) is transporting
a utility cart from the top right of the scene to its desired pose
on the middle left of the scene, indicated as the pale green ghost
shape of the cart (b).

Building on these observations and conclusions, we
contribute an experience-based mobile manipulation
planning and execution method that allows the robot
to memorize and later reuse the critical reaching moves
performed within close proximities of the OOIs and their
destinations. We show that this approach reduces the
overall computational demand for planning as the critical
manipulation regions are handled by the memorized
solutions. The main role of generative planning is to
move the robot towards the critical manipulation region
as quickly and directly as possible. This paradigm
results in considerable efficiency improvements compared
to planning from scratch every time the OOIs need to
be manipulated. We also observe that reiterating the
moves that have been executed in the past and are known
to be successful improves execution reliability. We run
our experiments in a simulated setup where our mobile
service robot has to pick up and transport several office
and hospital objects, such as chairs, overbed tables, utility
carts, and stretchers to their desired destinations while
avoiding collisions in cluttered environments (Figure 1).

The rest of the paper is organized as follows. Section 2
provides some brief background information on the
Rapidly-exploring Random Tree (RRT) variant generative
motion planning algorithms. Section 3 gives an overview
of the related work while Section 4 elaborates on the
contributed method. Section 5 presents the results of
our extensive experimental evaluation. Finally, Section 6

summarizes and concludes the paper while pointing out
some potential future work.

2. Background

In this work, we utilize a set of RRT variant algorithms,
namely the original RRT itself [1, 2], RRT-Connect [3],
and RRT∗ [4], as the generative planner component of
our proposed approach. In addition to their simplicity,
practicality, and probabilistic completeness property, the
sampling-based natures of RRT-based algorithms align
very well with the way our method defines and stores the
robot’s manipulation experiences.

Figure 2. Tree construction process of the RRT algorithm [3].

Starting from the initial configuration qinit, RRT-based
algorithms incrementally build a tree composed of
random configurations that could potentially be bounded
by certain constraints. In each iteration, a random
configuration qrand is picked by uniformly sampling the
configuration space, the “nearest” node to the sample
(qnear) is computed, the tree is extended a δ amount from
qnear towards qrand, and a new node qnew is added to
the tree if that configuration is collision-free (Figure 2).
Given enough time to explore the configuration space,
the constructed random tree eventually reaches the goal
configuration within some similarity boundaries, hence
the probabilistic completeness property of the algorithm.
Instead of following a purely random approach, it is also
possible to inform the search process by biasing the tree
growth towards the goal configuration using the goal
itself as a sample with probability p, while sampling
randomly with probability 1− p. Algorithm 1 presents the
pseudocode of the RRT algorithm in its simplest form.

Algorithm 1 The basic RRT algorithm.
1: function BUILDRRT(qinit, qgoal)
2: Tree← qinit;
3: qnew ← qinit;
4: while dist(qnew, qgoal) > THRESHOLD do
5: qrand ← Sample();
6: qnear ← Nearest(Tree, qrand);
7: qnew ← Extend(qnear, qrand);
8: if CollisionFree(qnew) then
9: Tree.add(qnew);

10: end if
11: end while
12: return Path(Tree, qnew);
13: end function

2 Int J Adv Robotic Sy, 2014, Vol. No, No:2014 www.intechopen.com

As the number of nodes in the tree increases, however,
finding the nearest node to the randomly sampled
configuration takes longer since the entire tree needs to
be traversed. There has been attempts to address this
problem by using more efficient data structures for faster
nearest neighbor computation as well as heuristics for
informed exploration. Utilizing a kd-tree for partitioning
the configuration space and searching for the nearest
neighbor on the kd-tree instead of the random tree itself
results in significant speed ups [5]. Heuristics, such as
shaping the probability distribution to alter the likelihood
of selecting any particular node based on the node’s
potential exploratory or lower cost path contributions,
lead to higher quality paths [6]. In addition to improving
the performance of an individual planning session, reusing
previously generated plans to guide current ones proves
very useful especially in highly dynamic environments,
such as robot soccer, that require intensive re-planning [7].
The plan generated in the previous iteration is used to
guide the progress of the plan in the current iteration
by keeping a waypoint cache with the assumption that
the environment would not change significantly between
consecutive iterations.

The RRT-Connect algorithm [3] uses a greedy heuristic that
aggressively tries to connect the tree to the samples by
moving over larger distances during configuration space
exploration and tree expansion. Instead of performing
a single step that extends the tree some δ amount
towards the sample, the Connect heuristic iterates the
extension operation until the sample is reached or an
obstacle is encountered, resulting in quicker and more
direct traversal of the distances between configurations.
This property of the RRT-Connect algorithm aligns well
with our motivating idea (1) about reaching the critical
manipulation region as quickly and directly as possible.

Even though the RRT algorithm rapidly explores the
configuration space and eventually reaches the goal, it
does not guarantee that the solution path is an optimal
one. The RRT∗ algorithm [4], on the other hand, focuses
on the optimality of the paths generated by the RRT
methodology. Each RRT∗ tree node stores its distance
from the start node in terms of path length, and instead
of looking for the closest single node to the sampled
configuration, RRT∗ looks for a set of near nodes. Therefore,
when a new configuration is sampled, not the closest node
but the node with the lowest cost among the near nodes
is extended towards the sample. Also, the near nodes
neighborhood is restructured by modifying the parents
and children of the nodes in order to end up with lowest
cost paths. The asymptotic optimality and directness
properties of the solutions generated by RRT∗ also align
well with our motivating idea (1).

In Section 4.2, we elaborate on how we utilize these
planning algorithms in our framework while improving
their performances via experience guidance and reuse.

3. Related Work

It has been shown in general problem solving domains that
reusing past experience stored as derivational problem
solving episodes improves planning and execution

efficiency [8–10]. Also, reusing previously constructed
paths or motion segments has been investigated in various
forms in the motion and manipulation planning literature.
In this section, we review the most recent related studies.

The adaptive motion primitives concept introduced in [11]
allows combining predefined multi-dimensional actions
with the primitives that are generated on the fly via
analytical solvers during plan graph construction and
search processes. Planning efficiency is improved by
initially planning for only 4 out of 7 degrees of freedom
(DoF) of the manipulator, and then switching to full
7 DoF planning towards the end. This hybrid and
multi-resolution approach resembles the method we
present in this paper, where the fine manipulation region
is reached roughly and the critical motions are performed
delicately within that region.

The Lightning framework [12] utilizes stored end-to-end
paths in addition to running a generative planner to plan
the required motion for a given problem. The processes of
planning from scratch and looking for a similar stored path
that can be repaired and reused for the given problem are
run simultaneously and the path returned by the process
that finds the solution first is used. The similarity of
a stored path to the given situation is determined by
comparing the start and end points, and Bi-directional
RRT (BiRRT) is used to repair infeasible paths by filling
in the gaps caused by the obstacles along the path. One
of the uses of the generative planner component of our
contributed method is to bridge the gaps along the blocked
sequences in a similar manner.

The Learning from Demonstration (LfD) concept [13] is
utilized in [14] to simplify programming for pick and place
tasks. Using a magnetic tracker to follow the index finger
of the human teacher, static trajectories are demonstrated
to an industrial manipulator equipped with a vacuum
gripper to pick and place objects with certain shape
constraints in an obstacle-free tabletop manipulation
scenario. The captured trajectories are transformed to the
robot’s frame of reference and segmented to extract task
primitives, which are then translated into robot-specific
codes to be executed in order to replicate the demonstrated
trajectory. Even though it may be suitable for factory
environments, this approach lacks flexibility and has
limited scalability as it requires new demonstrations for
each new task environment configuration that could
potentially include static obstacles.

The demonstration-guided motion planning (DGMP)
framework [15] combines LfD with motion planning,
where the demonstrated motions are recorded relative
to the robot’s torso as well as the OOIs in the task
environment, and dynamic time warping (DTW) [16]
is used for aligning multiple demonstration sequences.
Implicitly encoded constraints, such as keeping a full
spoon level to the ground to avoid spilling, are
automatically extracted from the task execution sequences
by looking at the low variance portions of the data.
Recorded and processed trajectories are reused in
relatively similar scenarios to the ones used for learning,
and generative planning is utilized to bridge the gaps
when obstacles are present along the way. This algorithm
also stores full, end-to-end paths, as in [12].

www.intechopen.com Tekin Meriçli, Manuela Veloso, H. Levent Akın:
Improving Prehensile Mobile Manipulation Performance through Experience Reuse

3

In order for the full length paths to be meaningful for
reuse, a large number of them covering various situations
should be stored. This is one of the aspects where our
proposed approach differs from the presented methods in
the literature. Instead of storing a large set of complete
end-to-end solutions, our algorithm stores only a few
partial relative trajectories that cover the critical regions
around the OOIs and the destinations so that these partial
executions can be reused in any scenario independent of
the actual configuration of the environment.

4. Experience-Based Mobile Manipulation

Pick and place tasks require planning and execution of
delicate reaching moves. As the manipulator approaches
the OOI and/or the destination, these moves become more
important and critical to the success of the manipulation
task. Likely due to that criticality, humans exploit a
small set of those target-specific delicate reaching and
manipulation moves when performing everyday pick
and place tasks even though there are infinitely many
ways of reaching for and manipulating objects [17].
Inspired by these observations, we develop the following
components and bring them together harmoniously to
achieve experience-based prehensile mobile manipulation:

• A set of local reaching moves represented as sequences
of state-action pairs that have been successfully
performed in the past,

• A generative planner to bridge the gaps at various
stages of planning and execution,

• An execution monitoring system that ensures accurate
reiteration of the memorized sequences.

In the remainder of this section, we elaborate on how the
target-specific local reaching moves (i.e., sequences) are
defined and acquired, how the stored motion sequences
are reiterated in such a way to obtain the previously
experienced results, and how the solutions provided by
the generative planner are merged with the available
sequences so that they complement each other effectively
to yield faster and more reliable executions.

4.1. Motion Sequences for Delicate Reaching and Manipulation

Having observed the critical yet repetitive nature of
the finite sets of target-specific delicate reaching and
manipulation moves, we let our mobile manipulator robot
simply memorize them. That way, they could be reused
for planning and performing mobile manipulation for the
same objects in the future instead of trying to come up with
plans that will achieve similar delicate moves from scratch
each and every time the OOIs need to be manipulated.

It is necessary to define a compact yet extensive
representation for these moves in order to address several
issues simultaneously. For instance, in some cases, as
in our problem domain, these moves may also have
additional pose and dynamics constraints; that is, a chair, a
utility cart, or a stretcher can only be reached and grabbed
when approached from behind within certain orientation
and velocity limits, otherwise get bumped into and
pushed away without a successful grasp. Therefore, it is

important for the robot to capture the velocity profile of the
motion as it performs those delicate moves and memorizes
them. Another important point is to make these fine
trajectories independent of the target’s global pose in order
to maximize their utilization through potential reuse in
various environment configurations. This is achieved by
defining and storing the trajectories with respect to the
target’s frame of reference; that is, if the robot is to pick
up the OOI, then the trajectories are in the OOI’s frame of
reference, and if it is to place the OOI, then the trajectories
are in the destination’s frame of reference.

Formally, our algorithm attaches a static global frame of
reference, ϕG, to the environment and separate frames of
reference to the robot and the target (either the OOI or the
destination), denoted as ϕR and ϕT , respectively, to define
their poses within ϕG. Let ℘R be ϕR w.r.t. ϕT denoted
as 〈x, y, θ〉. Invariance to ϕT is achieved by storing ℘R
instead of ϕR together with the motion command being
executed at that pose. Therefore, a local delicate reaching
and fine manipulation move, represented as a sequence of
state-action pairs of length n takes the following form,

Si∈[0,L) : ((℘R0 , a0), (℘R1 , a1), . . . , (℘Rn−1 , an−1)),

where aj∈[0,n) is the action associated with ℘Rj∈[0,n)
, denoted

as
〈
vx, vy, vθ

〉
, indicating the omni-directional motion

command composed of the translational and rotational
velocity components of the robot, and L is total number
of sequences for a particular OOI. Figure 3 illustrates
the visualization of the pick up (relative to the object)
and placement (relative to the destination) sequences
originating from poses located immediately around the
target and leading the robot to the relative pose where it
can pick up or drop off the OOI.

As the number of stored sequences and their lengths grow,
processing efficiency and scalability starts to become a
problem, especially if the sequences are being recorded
at each step of the robot’s perception cycle, which
corresponds to 30Hz in our case. To address this problem,
our algorithm sparsifies the sequences by granting access
to them at every kth frame, called an entry point. That is, the
robot can merge into a sequence or leave it when it needs to
only at the entry points. Figure 4 provides a close-up look
at the visualization of the pick up sequences memorized
for the chair object. The entry points are visualized as
scaled-down robot figures that indicate the robot’s relative
pose at every kth frame of the sequence. The value of k can
be adjusted depending on the dimensions of the OOIs and
the obstacles in the task environment as well as the motion
precision requirements of the task. Sparser sequences
with larger k values could be used in environments with
larger obstacles and denser sequences with smaller k
values could be used for checking and correcting for
diversions from the sequences more frequently to meet
precise movement requirements.

Since the sequences are defined relative to the target,
some of the entry points may not be reachable due to
direct obstruction or potential collisions depending on
the target’s global pose and the state of its immediate
surrounding. One important role of the entry points
is to provide a way to sparsely (hence quickly) check

4 Int J Adv Robotic Sy, 2014, Vol. No, No:2014 www.intechopen.com

(a) Three pick sequences obtained relative to the OOI.

(b) Three place sequences obtained relative to the destination.

Figure 3. Visualization of (a) pick and (b) place sequences
associated with the utility cart object and its potential destination.

Figure 4. Visualization of the sequences around the chair object
and their entry points depicted as scaled-down robot figures.

for collisions along the sequences to figure out which
portions of them are usable for any given environment
configuration. For that purpose, each entry point features
a binary flag indicating its feasibility, the value of which
is determined based on the collision reports provided by
our custom-built collision checker. Depending on the type
of a sequence, the collision checker tries to determine
for each of the entry points whether there would be any
collisions if the robot would have passed through it by
itself (for pick sequences) or while carrying the OOI (for
place sequences). In case the collision checker reports
an obstruction or a potential collision on an entry point,
it is marked as infeasible and excluded from the set of
entry points to be utilized for planning and execution. An
example visualization of the feasible (green) and infeasible
(red) entry points can be seen in Figure 3(b) where an
obstacle in the environment results in potential collisions
although not directly obstructing the sequence.

Once reached (Section 4.2) and merged into through an
entry point with index βk, β ∈ N0, the robot can start
reiterating a sequence simply by executing aj∈[βk,n) that
correspond to ℘Rj∈[βk,n)

along the sequence. In order to
guarantee successful completion of the task, the robot
monitors the execution during the reiteration process
(Section 4.3) to detect divergences from the expected
outcome and compensate for them as well as to check
for the feasibilities of the upcoming entry points to avoid
potential collisions by planning an auxiliary path that
would route the robot around the obstacle and merge
it back into a feasible segment of one of the sequences
(Section 4.2). Infinite loops during planning and execution
are prevented by marking each traversed entry point as
infeasible to remove them from the set of entry points to
be considered for reuse in potential re-planning. Figure 5
depicts the process of reiterating a collision-free sequence.

4.2. Generative Planner

In our contributed method, the sequences representing
local fine manipulation solutions are used analogously
to “cases” in a Case-Based Reasoning/Planning (CBR/P)
system [8–10, 18, 19]; that is, the robot knows how
to handle the rest of the problem when it recalls the
case. However, since our “cases” (i.e., sequences) are
already fine-tuned solutions, we do not attempt to adapt
them to the current problem configuration at hand as
would be done in the reuse step of the original CBR/P
approach. Instead, exploiting the fact that we can control
the state of the robot, our algorithm simply moves the
robot towards the cases that it can recall and apply
directly. This approach resembles the controllable state
features concept [20], which was used to transform the
currently perceived state to a familiar one rather than
trying to adapt the case to the current state.

Planning from scratch is only needed to navigate the
robot along a collision-free path towards the sequences
as the sequences take care of the delicate moves that
need to be performed within the close proximity of the
target to achieve the task. For that purpose, we utilize
sampling-based generative planning, as the underlying
representation aligns well with our definition of the
robot’s fine reaching and manipulation trajectories. We
specifically use a set of RRT variant algorithms, namely the
original RRT itself [1, 2], RRT-Connect [3], and RRT∗ [4],
the working principles of which are provided in Section 2.

As mentioned in Section 2, it is possible to bias the
growth of the RRT towards the goal by sampling the
goal pose with probability p while sampling randomly
with probability 1 − p. We extend this concept to bias
the tree growth towards the delicate manipulation region
immediately around the target so that the robot can reach
there as roughly and directly as possible and hand over
the rest of the execution to the fine-tuned sequences to
complete the task. That is, in the process of generating
plans for the robot to reach the target, each feasible entry
point on any sequence can potentially be considered as
a (sub)goal to be reached, since merging into a sequence
through any of those entry points would lead the robot
to where it eventually wants to go. This approach
also addresses indirectly, yet elegantly, one of the major

www.intechopen.com Tekin Meriçli, Manuela Veloso, H. Levent Akın:
Improving Prehensile Mobile Manipulation Performance through Experience Reuse

5

Figure 5. The robot reiterates a collision-free sequence simply by executing the motion commands associated with each frame of the
sequence one after the other. Passed entry points are marked as infeasible (red) to prevent infinite loops of planning and execution.

problems of RRT-based algorithms, which is the increasing
computational cost of the nearest neighbor search with
the increasing number of nodes in the tree. Even though
we represent the configuration space using a kd-tree and
perform the nearest neighbor computations on the kd-tree
in logarithmic time, keeping the number of generated RRT
nodes as small as possible via proper biasing in sampling
reduces computation and execution times considerably.

We define the following strategies for utilizing the feasible
entry points to guide the generative planning process.

• Sampling individual subgoals: Let pg be the
probability of sampling the actual goal pose that
the sequences lead to. Additionally, let pep be the
probability of sampling an individual entry point from
the set of all feasible entry points E. Provided that
there is a small number of relatively sparse sequences,
our algorithm can randomly sample an entry point
(i.e., a subgoal) from E with probability (|E|pep) while
sampling the goal with probability pg and a random
configuration with probability (1− (|E|pep)− pg).

• Sampling sequences: Instead of sampling individual
feasible entry points within sequences, with this
strategy, our algorithm samples with probability ps a
sequence Si from the set of sequences S associated
with the target. Then an entry point is randomly
sampled from the set of feasible entry points ESi that
belong to Si, which results in the total probability of
sampling an entry point being (|S|ps). Similar to the
previous strategy, a random configuration is sampled
with probability (1− (|S|ps)− pg).

• Sampling subgoals within goal probability: When
this strategy is employed, our algorithm combines
the actual goal with the set of feasible entry points,
obtaining a total of (|E|+ 1) (sub)goals. After deciding,
with probability pg, to use any goal as a sample,
either the actual goal is picked with probability pg∗ =
1/(|E|+ 1) or one of the feasible subgoals is randomly
picked with probability (1− pg∗).

• Coincidental termination: Instead of deliberately
biasing the RRT growth towards the sequences,
the feasible entry points can also be used for
early-terminating the search process of the generative
planner in case one of the entry points is coincidentally
reached within some pose difference tolerance. Since
the feasible entry points form a region of many subgoals
to be reached, it becomes likely for the generative
planner to arrive at one of those subgoals first while
trying to reach the actual single goal pose.

When these various guidance strategies are enabled,
we observe considerable reduction in the number of
generated RRT nodes and more direct paths towards
the fine manipulation regions around the targets, as we
show in Section 5 as part of our extensive experimental
evaluation. Algorithm 2 provides the pseudocode of
our experience-based sampling function that utilizes the
stored sequences based on the aforementioned strategies.
This function replaces the Sample function used in line 5 of
Algorithm 1.

Algorithm 2 Experience-based configuration sampling
function that utilizes the sequences.

1: function EXP_SAMPLE()
2: r ← rand()
3: if STR_WITHIN_GOAL_PROB then
4: if r ≤ pg then
5: r ← rand()
6: if r ≤ 1.0/(|E|+ 1) then
7: qrand ← qgoal
8: else
9: qrand ← GetRandomEntryPoint()

10: end if
11: else
12: qrand ← GetRandomConfiguration()
13: end if
14: else
15: if STR_INDIVIDUAL_SUBGOALS then
16: ptotal ← pg + |E|pep
17: else if STR_SEQUENCES then
18: ptotal ← pg + |S|ps
19: end if
20: if r ≤ pg then
21: qrand ← qgoal
22: else if r ≤ ptotal then
23: qrand ← GetRandomEntryPoint()
24: else
25: qrand ← GetRandomConfiguration()
26: end if
27: end if
28: return qrand
29: end function

Generative planning is not only used for navigating the
robot towards the sequences that are far away, but also
when the robot is reiterating a sequence and the upcoming
entry point is observed to be infeasible (i.e., obstructed).
In those cases, the generative planner guides the robot
around the obstacle to merge into another feasible segment

6 Int J Adv Robotic Sy, 2014, Vol. No, No:2014 www.intechopen.com

Figure 6. Reiteration of a sequence that is blocked by an obstacle. When the robot detects the upcoming entry point along the path to be
infeasible (red), it uses the generative planner to hop to a feasible portion of either the same sequence or another one and proceed.

and proceed with the execution of the corresponding
sequence, as was done in [12, 15] to bridge the gaps
along the stored trajectories. Figure 6 illustrates this
phenomenon. As mentioned before and shown in the
figure, infinite planning and execution loops are prevented
by marking the visited entry points as infeasible (red).

4.3. Execution Monitoring

Uncertainty is abundant in the world of robotics. Due
to the uncertainty in sensing and actuation, there may
be discrepancies between the expected outcome of a
particular action and the actual observed one. Therefore,
actively monitoring the robot during task execution is
necessary in order to detect and handle problems caused
by various sources of uncertainty that may be rooted in
the task environment as well as the robot itself [21].

In order to achieve the task, we need to ensure that the
sequences are reiterated as originally provided, mainly
because those delicate reaching and manipulation moves
are acquired and stored without any generalization. For
that purpose, the robot keeps track of its execution by
comparing its currently observed state to the expected one
as it passes through each entry point while reiterating
a sequence. The sequences provide the robot with the
information that the observed state should be ℘Rj+1 after
executing aj when in state ℘Rj . If it ends up in an
unexpected state, that is, if the currently visited entry
point suggests that the robot’s relative pose at that moment
should be ℘ but it is actually ℘′ and ||℘− ℘′|| >
ε, then the robot ceases reiteration, computes a linear
interpolation between ℘ and ℘′, moves accordingly to get
back to the expected state, and resumes reiteration. An
alternative implementation for the execution monitoring
module could use a simple controller that would make
slight modifications on the reiterated motion command to
keep the robot on the corresponding trajectory at all times.
Regardless of the implementation details, in general,
execution monitoring increases the chance of successfully
completing the task as opposed to open-loop reiteration.

5. Experimental Evaluation

We conducted extensive experiments in the Webots 1

mobile robot simulation environment [22], where we
modeled our omni-directional mobile manipulator robot
and several passively-mobile, manipulable office and
hospital objects shown in Figure 1. The robot has

1 http://www.cyberbotics.com

a footprint of roughly 0.27m in radius and it can
navigate with a maximum translational velocity of 0.6m/s
and a rotational velocity of π/2rad/s in the simulated
environments with dimensions 15m × 15m. Considering
the dimensions of the task environments and the δ value
used in the RRT expansion process (see Figure 2), which is
set to be equal to the robot’s radius, we placed a practical
limit on the maximum number of nodes as 43200 for all of
our generative planners, although we never observed the
planners fail by exceeding that limit. RRT search process is
terminated when the pose of the most recently added tree
node gets within 0.05m distance and π/36rad orientation
difference limits to the pose of a (sub)goal.

For the acquisition of the fine reaching and manipulation
sequences, we followed a LfD approach and joysticked
the robot to demonstrate it how to pick up and
place the manipulable objects available in the simulated
environment. It would also be possible for the robot to
acquire that experience through self exploration. Through
these demonstrations, we provided the robot with four
pick and four place sequences per OOI. Based on the
dimensions of the objects in our task environments and
the level of motion precision expected from the robot,
we empirically decided to sparsify these sequences by
defining entry points at every 30th frame (i.e., k = 30).
Pick up and placement of an OOI through the potential
utilization of the sequences is considered successful if the
robot (for pick up) or the OOI (for placement) gets within
0.05m distance and π/36rad orientation difference limits
to the target. The same tolerance values as the OOI pick
up and placement are used for execution monitoring as
we want to guarantee the robot to be within tolerable pose
difference limits by the time it arrives at the target.

In utilizing the sequences for guiding the generative
planning process, we set the bias for the entry points and
the sequences to be pep = ps = 0.01, which is smaller than
the actual goal bias of pg = 0.05, as the entry points and the
sequences being greater in quantity provides the desired
attraction to the fine manipulation region. Since there are
only a few and relatively sparse sequences used for each
OOI in our experiments, the total attraction probability of
the feasible entry points, that is |E|pep, never exceeds 0.5.

Figure 7 provides a visual overview of the effects
of various subgoal utilization strategies explained in
Section 4.2 on the generated RRT branches (orange) as well
as the solution paths (blue) for navigating the utility cart
object from the upper right corner of the environment to
the desired destination located at the bottom left corner.
In these preliminary runs, the spread of the branches,

www.intechopen.com Tekin Meriçli, Manuela Veloso, H. Levent Akın:
Improving Prehensile Mobile Manipulation Performance through Experience Reuse

7

http://www.cyberbotics.com

(a) No subgoals used. (b) Coincidental reach. (c) Sampling within goal. (d) Sampling sequences. (e) Sampling subgoals.

Figure 7. Different ways of combining the RRT generative planner and the sequences to achieve the task; (a) using none of the keyframes
as subgoals, (b) early termination by coincidental reaching, (c) sampling subgoals within goal probability, (d) sampling sequences, and
(e) sampling individual subgoals. The general tendency is observed to be towards a reduced number of generated nodes, hence shorter
planning times, and an increased directness of the generated paths with the increased utilization of the entry points as subgoals.

hence the number of nodes, seems to decrease while
the directness of the solution paths increases with the
increased utilization of the sequences. This kind of effect
is expected as the attraction of a fine manipulation region
increases with the incorporation of more of the individual
entry points into the planning guidance process. The
numerical details of these five preliminary runs are
provided in Table 1, where a correlation between the
number of nodes and the planning time can be observed.

Subgoal Use Nodes Planning time (ms)

None 1196 84.108
Coincidental 632 42.851
Within goals 343 25.425

Sequences 216 17.208
Individual subgoals 119 11.977

Table 1. RRT planning statistics for various subgoal utilization
strategies, the outcomes of which are visualized in Figure 7. 38
out of 41 subgoals were feasible in this scenario.

In order to thoroughly investigate how our
experience-guided mobile manipulation approach
performs under various conditions, we ran separate
pick up and placement planning tests in five randomly
configured task environments with four manipulable
objects: a chair, an overbed table, a utility cart, and a
stretcher (shown in Figure 1(a)). Due to the inherently
random nature of the RRT-based algorithms, each of
these tests were run 30 times for each combination of the
three generative planners and the four subgoal utilization
methods as well as the base case of planning only for
reaching the actual goal (the “none” case). 2

The box plots shown in Figure 8 present the planning
performances obtained with each of these combinations
for picking up and placing the chair object. Similar relative
performances were observed for the other manipulable
objects. Even though we present the number of nodes
generated in the planning process as the measured metric,
it is an implicit indicator of the relative time requirements
of each of those combinations as the planning time
decreases with the decreasing number of generated nodes
in RRT-based planners, as previously shown in Table 1.

2 Visualizations of the planning process with each planner and subgoal
utilization strategy combination, where the shrinking effect of increased
subgoal utilization on the spread of the generated trees and the solution
paths can be seen in http://youtu.be/ePZYq41uTrA

Looking at these plots, we see that sampling individual
subgoals and sampling sequences result in the best
performances (i.e., least number of nodes), in that order,
in all environments for all planners. On the other hand,
sampling subgoals within goal probability has a varying
relative performance depending on the environment and
the planner. It performs the poorest in the majority of
the task environments for the RRT and RRT∗ planners.
Considering its definition, we see that this strategy
actually decreases the probability of individual entry
points being sampled since it essentially involves a two
stage process, where the rarely occurring decision of
sampling a goal is followed by which (sub)goal to sample.
Therefore, instead of consistently directing the planner
towards a (sub)goal in each rare occasion of deciding to
sample a goal, it distracts the focus of the generative
planner, diminishing the attractive properties of the fine
manipulation region. In case the RRT-Connect planner
is used, however, this strategy performs the third best
in the majority of the task environments, though not
significantly better than the base case. This effect can be
explained by the way the RRT-Connect algorithm works,
which is directly reaching the sample unless an obstacle
is encountered. Therefore, once a (sub)goal is sampled,
the algorithm tries to reach it along a straight line without
any distraction or divergence. Coincidental termination
has a comparable performance to the base case due to
the very few number of sparse sequences, hence only
a few alternative goals to reach coincidentally. Better
performances with this strategy are observed when the
number of sequences and their densities are increased.

Figure 9 provides sequence utilization statistics of the
tests presented in Figure 8. The bars with the same
colors as the ones in Figure 8 indicate in what percentage
of the several planning trials with each combination the
planner eventually ended up reaching an entry point.
We see that sampling individual subgoals and sampling
sequences have high sequence utilization percentages,
which is expected. Even the coincidental termination
strategy seems to be making decent use of the sequences.
Although the percentages reported for the strategy of
sampling subgoals within goal probability seems to be
unexpectedly high, this situation has a perfect explanation.
Since this strategy combines the actual goal with the set of
subgoals and picks it with a probability of pg∗ = 1/(|E|+
1), which is much smaller compared to the probability of

8 Int J Adv Robotic Sy, 2014, Vol. No, No:2014 www.intechopen.com

http://youtu.be/ePZYq41uTrA

(a) (b)

(c) (d)

(e) (f)

Figure 8. Planning performance for picking up ((a), (c), and (e)) and placing ((b), (d), and (f)) the chair object in five different task
environments. The performance measure is the number of generated nodes by the RRT ((a) and (b)), the RRT-Connect ((c) and (d)), and
RRT∗ ((e) and (f)) generative planners. The relative time requirements of each combination are implicitly reflected.

picking any subgoal with probability (1− pg∗), it is highly
likely that the planner will end up reaching a subgoal
rather than the actual goal.

Another experiment we conducted was to compare the
effectiveness of utilizing every feasible segment of the
sequences and hopping among them during reiteration
to discarding the segments from the beginning of the
sequences all the way to the last occluded part and
utilizing only the remaining segments for planning and
reiteration. We ran the complete task of picking up,
navigating, and placing a particular OOI 10 times with
each of the three generative planners for both cases,
and measured the task completion times for each run.
Table 2 provides the total number of entry points on
the pick and the place sequences of the particular OOI
used in this experiment as well as the amount utilized
in different stages of the manipulation task, from where
it can be inferred that the sequences were severely
obstructed. Figure 10 illustrates task completion time
statistics obtained for both scenarios. Looking at the
mean values, marked with stars, we see that utilizing
all feasible segments of the available sequences helps the

Operation Entry points (Used / Total)
Segments utilized Segments discarded

Pick 34 / 48 23 / 48
Place 18 / 39 13 / 39

Table 2. Number of entry points used when partial sequence
segments are utilized versus when they are discarded.

robot perform better. The reason for greater variance is
that sometimes the robot merges into a segment that is
obstructed along the way to the goal and it has to hop to
other feasible segments to proceed, whereas sometimes it
ends up on an unobstructed segment of a sequence that
leads it directly to the goal. On the other hand, when the
blocked segments are discarded, the robot can only end up
on a segment unobstructed all the way to the goal if the
planner does not take it directly to the actual goal itself.
When all feasible segments are utilized, due to the greater
attraction effect created by the greater quantity of the entry
points, the robot plans a more direct path quicker, hence
gets to the fine manipulation region earlier, and completes
the task in less time.

www.intechopen.com Tekin Meriçli, Manuela Veloso, H. Levent Akın:
Improving Prehensile Mobile Manipulation Performance through Experience Reuse

9

(a) (b)

(c) (d)

(e) (f)

Figure 9. Sequence utilization while planning and executing pick ((a), (c), and (e)) and place ((b), (d), and (f)) tasks for the chair object in
five different environments. Utilization percentage is measured for the RRT ((a) and (b)), the RRT-Connect ((c) and (d)), and RRT∗ ((e) and
(f)) generative planners.

Figure 10. Durations for the complete pick and place task when
the feasible segments of the partially occluded sequences are
utilized in planning and execution versus when the segments from
the beginning of the sequences to the occluded part are discarded.

The last experiment we conducted was to demonstrate the
advantage of utilizing the attraction of a fine manipulation
region over merely increasing the sampling probability of

the single actual goal. For that purpose, we prepared
a placement planning and execution scenario for the
stretcher object where the direct path (i.e., line of sight) to
the actual goal was blocked, as shown in Figure 11. In this
scenario, a total of 42 out of 48 entry points were feasible.

We experimented with each combination of the three
generative planners and the four subgoal utilization
strategies as well as the base case with an increased goal
bias. We ran 30 tests for each of these combinations. The
sampling probability of the single actual goal used in the
base case was set to be equal to the highest sampling
probability of the fine manipulation region obtained with
the individual subgoal sampling strategy through adding
the sampling probabilities of individual subgoals pep on
top of the sampling probability of the actual goal pg,
that is (|E|pep + pg). In our experiment scenario, where
42 feasible entry points are present, this value equals

10 Int J Adv Robotic Sy, 2014, Vol. No, No:2014 www.intechopen.com

Figure 11. Visualization of the stretcher placement scenario
where the direct path to the actual goal pose is blocked.

to (42 × 0.01 + 0.05 = 0.47); therefore, pg = 0.47 for
the base planning case. Figure 12 illustrates the relative
performances of each of the combinations. Even in
this challenging scenario, all of our experience-guided
methods perform better than the base case planning
strategy. In particular, the strategy of sampling individual
subgoals results in the best performance. Even though
the single goal of the base case planning strategy has
the same attraction value as the entire fine manipulation
region formed by the sequences, the entry points being
distributed around the target helps the planner find its
way around the obstacles easier and quicker.

Figure 12. Planning performance using various subgoal
utilization strategies versus merely increasing the goal bias in the
scenario where the direct path to the goal is blocked (Figure 11).

6. Conclusion and Future Work

The delicacy and precision required by the pick and place
activities performed in everyday living contexts may strain
even the state-of-the-art planners, demanding significant
amount of time and computational resources to generate
successful solutions. However, careful examination of
such tasks reveal recurring manipulation patterns, which
usually occur within the close vicinity of the object and
the destination. Fine manipulation within those regions
is critical to the overall success of the task.

Motivated by this observation, we contribute an
experience-based mobile manipulation method where the
robot memorizes a few number of critical yet recurring
target-specific fine reaching and manipulation moves
as state-action sequences, and reuses them whenever
possible to guide manipulation planning and execution.
We show through extensive experimentation that this
guidance helps reduce task completion times considerably
when combined with a sampling-based generative
planner, while increasing the chance of successful task

completion by carefully reiterating previously executed
and known-to-be-successful fine moves. Our approach
harmoniously combines the already available partial plans
and executions with the ones generated from scratch,
yielding to fast, reliable, and repeatable solutions. 3

Application of the proposed approach to both prehensile
and non-prehensile manipulation problems in higher
dimensional setups, handling uncertainty in perception
explicitly in addition to monitoring the overall execution,
accumulating new experiences over time, and transferring
learned delicate reaching and manipulation sequences
among objects with similar properties are some of the
potential research problems to tackle in the future.

7. Acknowledgments

The first author was partly supported by The Scientific
and Technological Research Council of Turkey under
Programmes 2211 and 2214, and the Turkish State
Planning Organization (DPT) under the TAM Project,
number 2007K120610. This research was further
supported by the National Science Foundation under
grant number IIS-1012733, by the Office of Naval
Research under grant number N00014-09-1-1031, and by
the Air Force Research Laboratory under grant number
FA87501220291. The views and conclusions contained
herein are those of the authors only.

8. References

[1] Steven M. LaValle. Rapidly-Exploring Random Trees:
A New Tool for Path Planning. Technical Report TR
98-11, Department of Computer Science. Iowa State
University, 1998.

[2] Steven M. LaValle. Planning Algorithms. Cambridge
University Press, New York, NY, USA, 2006.

[3] James J. Kuffner and Steven M. LaValle. RRT-connect:
An efficient approach to single-query path planning.
In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 995–1001, 2000.

[4] Sertaç Karaman and Emilio Frazzoli. Incremental
Sampling-based Algorithms for Optimal Motion
Planning. In Proceedings of Robotics: Science and
Systems (RSS), Zaragoza, Spain, June 2010.

[5] Anna Atramentov and Steven M. LaValle. Efficient
nearest neighbor searching for motion planning. In
Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), volume 1, pages
632–637, 2002.

[6] Chris Urmson and Reid Simmons. Approaches for
Heuristically Biasing RRT Growth. In Proceedings
of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), volume 2, 2003.

[7] James Bruce and Manuela Veloso. Real-time
randomized path planning for robot navigation. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), volume 3, pages 2383–2388, 2002.

[8] Manuela M. Veloso. Planning and Learning by
Analogical Reasoning. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1994.

3 An example video showing the robot performing experience-guided pick
and place can be seen here: http://youtu.be/IUzffcQ15WU

www.intechopen.com Tekin Meriçli, Manuela Veloso, H. Levent Akın:
Improving Prehensile Mobile Manipulation Performance through Experience Reuse

11

http://youtu.be/IUzffcQ15WU

[9] Manuela M. Veloso. Flexible Strategy Learning:
Analogical Replay of Problem Solving Episodes.
In Proceedings of the Twelfth National Conference on
Artificial Intelligence, volume 1 of AAAI ’94, pages
595–600, Menlo Park, CA, USA, 1994. American
Association for Artificial Intelligence.

[10] Manuela M. Veloso. Merge strategies for multiple
case plan replay. In David B. Leake and Enric
Plaza, editors, Case-Based Reasoning Research and
Development, volume 1266 of Lecture Notes in Computer
Science, pages 413–424. Springer Berlin Heidelberg,
1997.

[11] Benjamin J. Cohen, Gokul Subramania, Sachin Chitta,
and Maxim Likhachev. Planning for Manipulation
with Adaptive Motion Primitives. In Proceedings
of the IEEE International Conference on Robotics and
Automation (ICRA), pages 5478–5485, 2011.

[12] Dmitry Berenson, Pieter Abbeel, and Ken Goldberg.
A Robot Path Planning Framework that Learns from
Experience. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages
3671–3678, 2012.

[13] Brenna D. Argall, Sonia Chernova, Manuela Veloso,
and Brett Browning. A Survey of Robot Learning
from Demonstration. Robotics and Automation Systems,
57(5):469–483, 2009.

[14] Alexander Skoglund, Boyko Iliev, Bourhane Kadmiry,
and Rainer Palm. Programming by Demonstration
of Pick-and-Place Tasks for Industrial Manipulators
using Task Primitives. In International Symposium on

Computational Intelligence in Robotics and Automation,
2007. CIRA 2007, pages 368–373, 2007.

[15] Gu Ye and Ron Alterovitz. Demonstration-guided
Motion Planning. In Proceedings of the International
Symposium on Robotics Research (ISRR), August 2011.

[16] Hiroaki Sakoe and Seibi Chiba. Dynamic
programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics,
Speech and Signal Processing, 26(1):43–49, Feb 1978.

[17] Carolyn R. Mason, Jose E. Gomez, and Timothy J.
Ebner. Hand synergies during reach-to-grasp. Journal
of Neurophysiology, 86(6):2896–2910, 2001.

[18] Brigitte Bartsch-Spörl, Mario Lenz, and André
Hübner. Case-Based Reasoning - Survey and Future
Directions. In Proceedings of the 5th German Biennial
Conference on Knowledge-Based Systems, pages 67–89.
Springer Verlag, 1999.

[19] Luca Spalazzi. A Survey on Case-Based Planning.
Artificial Intelligence Review, 16:3–36, 2001.
10.1023/A:1011081305027.

[20] Raquel Ros, Josep Lluís Arcos, Ramon Lopez
de Mantaras, and Manuela Veloso. A Case-based
Approach for Coordinated Action Selection in Robot
Soccer. Artificial Intelligence, 173:1014–1039, June 2009.

[21] Ola Pettersson. Execution Monitoring in Robotics: A
Survey. Robotics and Autonomous Systems, 53:73–88,
2005.

[22] Olivier Michel. Webots: Professional Mobile Robot
Simulation. Journal of Advanced Robotics Systems,
1(1):39–42, 2004.

12 Int J Adv Robotic Sy, 2014, Vol. No, No:2014 www.intechopen.com

	Introduction
	Background
	Related Work
	Experience-Based Mobile Manipulation
	Motion Sequences for Delicate Reaching and Manipulation
	Generative Planner
	Execution Monitoring

	Experimental Evaluation
	Conclusion and Future Work
	Acknowledgments
	References

