
JFun: Functional Programming in Java

Tekin Meriçli, Peng Bi

Department of Computer Sciences

The University of Texas at Austin

{tmericli,pengbi}@cs.utexas.edu

Abstract

A function is a good way of specifying a computation since in each
computation the result depends in a certain way on the parameters,
and using functions makes a program modular and well-structured. In
order to reduce the development effort and future programming costs
caused by bugs and maintenance problems, writing well-structured and
modular programs has become crucial as software becomes more and
more complex. Since modularity is the key to successful programming,
functional languages are vitally important to the real world. In this
paper we try to show that writing programs in an object-oriented lan-
guage by using functional programming concepts is possible. As exam-
ples, list and tree manipulation functions, numerical integration and
differentiation, and alpha-beta heuristic which is an algorithm from Ar-
tificial Intelligence used in game-playing programs are implemented in
Java programming language using functional programming concepts.

1 Introduction

The first computers were built during the 40s, and huge connection boards
were used to “program” those very first models. Soon the programs were
started to be stored in the memory of the computer, introducing the first
programming languages. It was obvious to have the programming language
resemble the architecture of the computer as close as possible since the com-
puter use was very expensive in those days. A computer mainly consists of
a central processing unit and a memory; therefore, a program consisted of
instructions to modify the memory, executed by the processing unit. With
that the imperative programming style arose. Imperative programming lan-
guages, like Pascal and C, are characterized by the existence of assignments,
executed sequentially.

1

Of course there were some methods to solve problems before the inven-
tion of computers, one of which is pure math. In math, for at least the last
four hundred years, functions have played a central role. Functions express
the connection between parameters (the input) and the result (the output)
of certain processes. A function is a good way of specifying a computation
since in each computation the result depends in a certain way on the param-
eters. This is the basis of the functional programming style. In functional
programming, a program consists of the definition of one or more functions.
During the “execution” of a program, some parameters are provided to the
function, and the function is expected to calculate and return the result [2].

In this paper, we implement some essential functional programming el-
ements using Java, which is a structured object-oriented programming lan-
guage, to have a deeper understanding in the difference between program-
ming in a functional way and in a objected-oriented structural way. The rest
of the paper is organized as follows. Section 2 gives some brief background
information on functional programming and object-oriented programming,
and provides a comparison between functional programming and imperative
programming in general. Design stage of the project is explained in detail
in Section 3. Section 4 gives Java implementation details of some of the
examples given in [1] as well as some general examples of using functional
programming concepts in object-oriented programming in order to provide
further understanding of the subject. Finally, Section 5 summarizes the
work.

2 Background

This section gives some brief information about functional programming
and object-oriented programming, and provides a comparison of functional
programming and imperative programming.

2.1 Functional Programming

C, Java, Pascal, Ada, and so on, are all imperative languages in the sense
that they consist of a sequence of commands, which are executed strictly
one after the other. On the other hand, Haskell, for example, is a functional
language. A functional program is a single expression, which is executed by
evaluating the expression.

Functional programming supports functions as first-class objects, some-
times called closures, or functor objects. Essentially, closures are objects
that act as functions and can be operated upon as objects. Similarly, FP

2

languages support higher order functions. A higher order function is able
to take another function (indirectly, an expression) as its input argument,
and in some cases it may even return a function as its output argument.
These two constructs together allow for elegant ways to modularize pro-
grams, which is one of the biggest advantages of using FP.

Anyone who has used a spreadsheet has experience of functional pro-
gramming since spreadsheets are one common example of the use of func-
tional programming. In a spreadsheet, one specifies the value of each cell in
terms of the values of other cells. The focus is on what is to be computed,
not how it should be computed. For example:

• no need to specify the order in which the cells should be calculated -
instead we take it for granted that the spreadsheet will compute cells
in an order which respects their dependencies.

• no need to tell the spreadsheet how to allocate its memory - rather,
we expect it to present us with an apparently infinite plane of cells,
and to allocate memory only to those cells which are actually in use.

• for the most part, we only specify the value of a cell by an expression
(whose parts can be evaluated in any order), rather by a sequence of
commands which computes its value.

An interesting consequence of the spreadsheet’s unspecified order of re-
calculation is that the notion of assignment is not very useful. After all,
if you don not know exactly when an assignment will happen, you can not
make much use of it. This contrasts strongly with programs in conventional
languages like C, which consist essentially of a carefully-specified sequence of
assignments, or Java, in which the ordering of method calls is crucial to the
meaning of a program. This focus on the high-level “what” rather than the
low-level “how” is a distinguishing characteristic of functional programming
languages.

Another well-known nearly-functional language is the standard database
query language SQL. An SQL query is an expression involving projections,
selections, joins and so forth. The query says what relation should be com-
puted, without saying how it should be computed. Indeed, the query can be
evaluated in any convenient order. SQL implementations often perform ex-
tensive query optimization which (among other things) figures out the best
order in which to evaluate the expression.

So far we explained the characteristic differences that separate functional
programming from imperative programming. Before proceeding with the

3

benefits of functional programming, we will provide an example of “quick-
sort” program written in Haskell, in order to give the idea of what a func-
tional program looks like.

qsort [] = []

qsort (x:xs) = qsort (filter (< x) xs) ++ [x]

++ qsort (filter (>= x) xs)

2.1.1 Benefits of Functional Programming

As seen in the quicksort example, functional programs are much shorter (two
to ten times) in general. Therefore, one benefit of functional programs is
being much more concise compared to their imperative counterparts. Also,
functional programs are often easier to understand. For example, the first
line of the quicksort program reads: “The result of sorting an empty list ([])
is an empty list”. The second line reads: “To sort a list whose first element
is x and the rest of which is called xs, sort the elements of xs that are less
than x, sort the elements of xs that are greater than or equal to x, and
concatenate (++) the results with x sandwiched in the middle.”

Safety is one of the most important properties of a functional program.
Most functional languages are strongly typed. Therefore, a huge class of easy-
to-make errors is eliminated at compile time. In particular, strong typing
means no core dumps; that is, there is simply no possibility of treating an
integer as a pointer, or following a null pointer.

Polymorphism and code re-use can be listed as the other important ben-
efits of functional programming. For example, the quicksort program given
in the previous section will not only sort lists of integers, but also lists of
floating point numbers, lists of characters, lists of lists; indeed, it will sort
lists of anything which can be compared by the less-than and greater-than
operations.

Although there are a lot more, one last benefit that should be mentioned
is the support of powerful abstractions. In general, functional languages offer
powerful new ways to encapsulate abstractions. An abstraction allows you
to define an object whose internal workings are hidden; a C procedure, for
example, is an abstraction. Abstractions are the key to building modular,
maintainable programs. One powerful abstraction mechanism available in
functional languages is the higher-order function. In Haskell, for example,
a function can freely be passed to other functions, returned as the result
of a function, stored in a data structure, and so on. It turns out that

4

the judicious use of higher-order functions can substantially improve the
structure and modularity of many programs [3].

2.2 Object-Oriented Programming

In short, object-oriented programming is a type of programming in which
programmers define not only the data type of a data structure, but also the
types of operations (functions or methods as in the OOP jargon) that can
be applied to the data structure. In this way, the data structure becomes an
object that includes both data and functions. In addition, programmers can
create relationships between one object and another. For example, objects
can inherit characteristics from other objects.

One of the principal advantages of object-oriented programming tech-
niques over procedural programming techniques is that they enable pro-
grammers to create modules that do not need to be changed when a new
type of object is added. A programmer can simply create a new object
that inherits many of its features from existing objects. This makes object-
oriented programs easier to modify.

2.2.1 Java

Java is an object-oriented programming language developed initially by
James Gosling and colleagues at Sun Microsystems. The language, ini-
tially called Oak (named after the oak trees outside Gosling’s office), was
intended to replace C++, although the feature set better resembles that of
Objective C. Unlike conventional languages which are generally designed to
be compiled to native code, Java is compiled to a bytecode which is then run
(generally using JIT compilation) by a Java virtual machine. The syntax
of Java is largely derived from C++. But unlike C++, which combines the
syntax for structured, generic, and object-oriented programming, Java was
built from the ground up to be fully object-oriented. Everything in Java is
an object (with a few exceptions), and everything in Java is written inside
a class [4]. Here is an illustrative example:

Listing 1: Example of the classical “Hello World” program written in Java

// He l l o . java
public class Hel lo {

public stat ic void main (St r ing [] a rgs) {
System . out . p r i n t l n (‘ ‘ He l lo world ! ’ ’) ;

}
}

5

2.2.2 Generics in Java

The need for generic types stems from the implementation and use of collec-
tions, like those in the Java collection framework. Typically, the implemen-
tation of a collection of objects is independent of the type of the objects that
the collection maintains. Therefore, it does not make sense to re-implement
the same data structure over and over again, just because it will hold differ-
ent types of elements. Instead, the goal is to have a single implementation of
the collection and use it to hold elements of different types. In other words,
rather than implementing a class IntList and StringList for holding integral
values and strings, respectively, we want to have one generic implementation
List that can be used in either case.

Java is a strongly typed language. When programming with Java, at
compile time, you expect to know if you pass a wrong type of parameter to
a method. For instance, if you define

Dog aDog = aBookReference; // ERROR

where, aBookReference is a reference of type Book, which is not related
to Dog, you would get a compilation error. Unfortunately though, when
Java was introduced, this was not carried through fully into the Collections
library. So, for instance, you can write

Vector vec = new Vector();

vec.add(‘‘hello’’);

vec.add(new Dog());

There is no control on what type of object you place into the Vector during
compilation,; however, this causes the program to run incorrectly.

Being very similar to C++ templates, generics allow the programmer to
abstract over types. The most common examples are container types, such
as those in the Collection hierarchy. Here is a typical usage of that sort:

List myIntList = new LinkedList(); // 1

myIntList.add(new Integer(0)); // 2

Integer x = (Integer) myIntList.iterator().next(); // 3

What if programmers could actually express their intent, and mark a
list as being restricted to contain a particular data type? This is the core

6

idea behind generics. Here is a version of the program fragment given above
using generics:

List<Integer> myIntList = new LinkedList<Integer>(); // 1

myIntList.add(new Integer(0)); //2

Integer x = myIntList.iterator().next(); // 3

Notice the type declaration for the variable myIntList. It specifies that this
is not just an arbitrary List, but a List of Integer, written List<Integer>.
We say that List is a generic interface that takes a type parameter - in this
case, Integer. We also specify a type parameter when creating the list object
[5].

2.3 Functional Programming vs. Imperative Programming

Although the comparison of functional programming and imperative pro-
gramming is provided implicitly in the preceding sections, this section sum-
marizes the concept.

Functional programming appears to be missing several constructs often
(though incorrectly) considered essential to an imperative language such as
C or Pascal. For example, in strict functional programming, there is no
explicit memory allocation and no explicit variable assignment. However,
these operations occur automatically when a function is invoked: memory al-
location occurs to create space for the parameters and the return value, and
assignment occurs to copy the parameters into this newly allocated space
and to copy the return value back into the calling function. Both operations
can only occur on function entry and exit, so side effects of function evalu-
ation are eliminated. By disallowing side effects in functions, the language
provides referential transparency which ensures that the result of a function
will be the same for a given set of parameters no matter where or when it is
evaluated. Referential transparency greatly eases both the task of proving
program correctness and the task of automatically identifying independent
computations for parallel execution.

Iteration (looping), another imperative programming construct, is ac-
complished through the more general functional construct of recursion. Re-
cursive functions invoke themselves, allowing an operation to be performed
over and over. In fact, it can be proven that iteration is equivalent to a
special type of recursion called tail recursion. Recursion in functional pro-
gramming can take many forms and is in general a more powerful technique
than iteration. For this reason, almost all imperative languages also support

7

Term

Value Function

IntValue DoubleValue RuntimeFunction…FJmapFJreduce FJwithin

Term

Value Function

IntValue DoubleValue RuntimeFunction…FJmapFJreduce FJwithin

Figure 1: class hierarchy

it (with FORTRAN 77 and COBOL, before 2002, as notable exceptions).
Functional programming often depends heavily on recursion. The Scheme

programming language even requires certain types of recursion (tail recur-
sion) to be recognized and automatically optimized by a compiler.

3 Design

Essentially, because of the major distinction between Java and a functional
programming language, we need to implement a mini functional compiler in
order to take advantage of the features. The compiler has to

• understand the functional terms and have corresponding data struc-
tures to represent them internally in Java

• be able to evaluate the terms in the functional manner, and support
lazy evaluation.

3.1 Types and Representation

Roughly speaking, the functional language we implement only needs two
types: primitive type and function type. Primitive type includes Nil, inte-
gers and floating point numbers. The function type includes all functions,
such as cons, sum, reduce, etc. The simplicity in the type system of JFun
is different from an OOP language like Java, in which many complicated
types can be defined, while the complicated types in JFun are expressed as
functions, which are usually defined recursively.

The class hierarchy is showed in Figure 1. Class Term is the general
representation, which is an abstract class. A term may be either a value of

8

some primitive type, or a function, optionally with a set of parameters, each
of which is also an instance of Term.

In Listing 2, there are some examples of how to create JFun terms in
Java.

Listing 2: Examples of creating terms in Java

// i n t e g e r 1
Term t = new IntValue (1) ;
// cons 1 Ni l
Term con = new FJcons (t , new Value (null)) ;
// cons 10 (cons 1 Ni l)
Term con2 = new FJcons (new Value (10) , con) ;

Note that each instance of Term class is immutable, meaning once the
instance is created, the parameters of the function, or the value of the term
are not allowed to be changed. This is consistent with the philosophy of
functional programming languages, and makes the evaluation process much
easier. For example, when we want to apply a parameter p to a function
f by calling f.addParameter(p), a new instance of the function object is
exactly cloned from f before attaching p. More detailed information can be
obtained from the Java source code in Function.java.

Of course, it could be possible to use Java generics in the implementa-
tion of the examples but this time we needed to declare each type we used,
mainly Value and Function, as separate individual classes instead of ex-
tending the base class Term for creating those types. In that way, we would
not need to use type-casting when, for example, reading a parameter using
getParam() and want to make sure that the parameter is a function.

Value v = (Value)getParam(0);

Function f = (Function)getParam(1);

If we had used generics, the base type definition would be Term<subtype>,
where subtype is either a Value or a Function. However, we solved that
problem in our current implementation by using two different functions
called isFunction(), which return true when a Term is a Function, and
isValue(), which return true when a Term is a Value.

3.2 Parsing

One may notice that although we can create all JFun terms by using the Java
syntax, the process is very tedious and might be error-prone. For instance,
each value and each function need to be created with a new statement.

9

Therefore, we have designed a parsing algorithm to create terms in a flexible
and concise way. The goal is to be able to parse a term string and create the
object that represents the term automatically. Listing 3 gives the pseudo
code for the parsing algorithm.

Listing 3: parsing algorithm

public stat ic Term createTerm (St r ing s , Term [] v a r i a b l e s)
// input s : the s t r i n g to be parsed
// v a r i a b l e s : prov ided v a r i a b l e s

// f i r s t , s p l i t s i n t o sub terms as a l i s t o f s t r i n g s
// f o r examples , ”con 1 (con 2 Ni l)” w i l l be s p l i t i n t o
// [” con ” , ”1” , ”con 2 Ni l ”]
L i s t terms = spl i tTerm (s) ;

//now t r a n s l a t e S t r i n g s to Terms
i f (terms . s i z e ()>1){ //must be a func t i on wi th parameters

// c r ea t e the func t i on
Function f = createTerm (terms [0] , v a r i a b l e s) ;
// c rea t e the term o b j e c t s f o r the parameters
for (int j =1; j<terms . s i z e () ; j++) {

Term t = createTerm (terms [j] , v a r i a b l e s) ;
f = f . addParameter (t) ;

}
return f ;

} else i f (terms . s i z e ()==1){
//can be a va lue or a func t i on wi thout any parameter
St r ing x = terms [0] ;
i f (i sVa lue (x))

return createValue (x) ;
i f (x . s tartsWith (”%”)){ // i sVa r i a b l e

return va r i a b l e s [ge tVar iab le Index (x)] ;
}
//must be a func t i on ’ s name
St r ing className = x ;
return createFunct ion (className) ;

}
else throw new RuntimeException (‘ ‘ empty s t r i n g ’ ’) ;

With the parsing algorithm, the creation of terms is a lot more elegant
than using the native Java code:

// cons 1 Ni l
Term l i s t 1 = Term . createTerm (‘ ‘ cons 1 Ni l ’ ’) ;
// demonstrat ion o f v a r i a b l e s : cons 10 l i s t 1

10

Term l i s t 2 = Term . createTerm (‘ ‘ cons 10 %1 ’ ’ , l i s t 1) ;
// cons 10 (cons 1 Ni l)
Term l i s t 3 = Term . createTerm (‘ ‘ cons 10 (cons 1 Ni l) ’ ’) ;

3.3 Evaluation and Type Checking

The core of JFun is to evaluate each term, and reduce the terms into their
simplest forms. Without considering lazy evaluations, the evaluation algo-
rithm for a function can be described as follows. First, we check if enough
parameters have been provided for the reduction. If so, we reduce all given
parameters to their simplest forms, i.e. we recursively call the evaluation
procedure on all parameters. Otherwise, we stop the evaluation process be-
cause it gets stuck by the definition of the function. Second, we transform
the terms into the reduced format according to the rules defined in the func-
tion. For example, when we evaluate function add, we first check if there
are at least two arguments provided. If not, we cannot continue evaluating
the function. If so, we evaluate the two parameters x and y. Both of them
are anticipated to be reduced into integers. Then, we calculate x + y and
create an IntValue object as the return value. Note that if more than two
objects are provided, an exception will be raised because no parameters can
be applied to any primitive types.

Type checking is done along with the evaluation process. That is, we
do not have a static type checking mechanism before function executions.
Instead, type checking is dynamic in JFun. In the add example above, if
either one of the two arguments x and y does not end up with an integer,
a type mismatched exception will be raised and the evaluation process will
be terminated.

The above evaluation algorithm works well until we need lazy evaluation.
Lazy evaluation is a unique feature of functional programming languages.
It allows the existence of potentially infinite data structures. Therefore, we
cannot evaluate all the parameters to their simplest forms before evaluating
the function, because the parameter evaluations may never end.

The strategy we use to support lazy evaluation is two folds. First, in
addition to having an eval() method of each term that reduces the term to
the ultimate form, we also have a lazyEval() method so that the evaluation
progress is only made one step forward. That is, as long as the evaluation
makes some progress, lazyEval() will return the updated term. Hence,
calling eval() on a term is equivalent to repeatedly calling lazyEval()

until no further progress can be made. Second, we use type-based pattern
matching on the parameters instead of blindly evaluating all parameters

11

before reducing the current function. The type-based pattern matching
rule dictates that as long as the variables needed for the function match the
types extracted from the parameters, we can stop evaluating the parameters
and start applying the function rules to the variables. Otherwise, we use
lazy evaluation on the parameters with mismatched types, until either they
match or they cannot be evaluated further.

For example, considering the function add x y = x+y again. If we an-
notate type IntValue with both x and y, then we should lazily evaluate the
first two parameters until their types match IntValue. In this case, there is
little difference from the implementation we described earlier without lazy
evaluation consideration, because no further progress can be made on terms
with primitive types. However, considering the following case:

repeat f a = cons a (repeat f (f a))

double x = x*2

second (cons a (cons b rest)) = b

We want to evaluate second (repeat double 10). Simply evaluating the
first parameter of the function second would incur an infinite recursion
loop. Instead, in lazy evaluation, we will do a pattern matching between the
wanted type (cons a (cons b rest)) and the given parameter repeat

double 10. Even we do not annotate any type to a, b, or rest (which
means that they are allowed to match terms of any type), the types of the
whole terms apparently do not match. Thus, a lazyEval() call on the term
repeat double 10 is executed, which returns

cons 10 (repeat double (double 10))

lazyEval() is continuously called on the returned term until the type com-
pletely matches the expected one. In this example, it stops when the pa-
rameter is reduced to

cons 10 (cons (double 10) (repeat double (double (double 10))))

Based on the pattern matching, b is extracted as the term double 10,
which is further evaluated into the final result (20) based on the defini-
tion of double. The pseudo code of the lazy evaluation implementation in
function second is showed in Listing 4.

Listing 4: pseudo code of lazy evaluation in function second

12

// eva l ua t e the term to the s imp l i s t form
Term Function . eva l () {

Term re s = this ;
// i s i t f u l l y e va l ua t ed ?
while (! r e s . eva luated)

r e s = r e s . lazyEval () ;
return r e s ;

}

// second (cons a (cons b r e s t)) = b
Term FJsecond . lazyEval (){

//need at l e a s t one parameter to proceed
Term tmp = checkParams (1) ;
i f (tmp!=null) return tmp ;
Function cons = parameters [0] ;
while (! cons . getName () . equa l s (” cons ”)){

cons = (Function) cons . lazyEval () ;
}
cons = cons . parameters [1] ;
while (! cons . getName () . equa l s (” cons ”)){

cons = (Function) cons . lazyEval () ;
}
Term b = cons . parameters [0] ;
// a t t ach the remaining unused parameters i f any

} return attachRemainingParams (b , 1) ;

3.4 Runtime Functions

Being able to do lazy evaluation in JFun allows us to implement all the
functions provided in [1]. To add a new function, one needs to extend the
class Function, and override the eval() with laziness consideration. How-
ever, for most of the functions with relatively simple implementation, the
work of creating a new class is an overkill, and tedious as well. Besides, all
functions must be programmed at compile time with explicit corresponding
Java classes, which reduces flexibility.

To overcome these shortcomings, we provide the support of creating
functions at runtime, i.e. runtime functions. The syntax of using runtime
function is as follows:

RuntimeFunction::= Function [Arguments] = Implementation

Arguments::=Term [Arguments]|(Arguments)

Implementation::= Term [Implementation] | (Implementation)

13

Term::=Function | Variable

Variable::=$VariableName|$$VariableName

Here are some self-explanatory examples.

addRuntimeFunction (” quadruple $$x=add (double $$x) (double $$x) ”) ;
addRuntimeFunction (”map2 $ f = reduce (dot cons $ f) Ni l ”) ;
addRuntimeFunction (” second (cons $a (cons $b $ r e s t))=$b”) ;

Note the subtle differences between the variables with prefix of $ and
$$. A variable with a prefix of $$ means that the expected type is one of
the primitive types. On the other hand, a variable starting with $ can be
matched to any type. In the quadruple function, since we are expecting to
take an integer, $$x is used. The function of second only needs to return the
second element of the list, where no type assumption is made. Therefore,
$b is used instead.

Providing the type hint for the runtime function has two benefits. First,
if the program is not well typed, the error can be observed in the early stage
of evaluation. Second, it increases the efficiency of the program. In the
quadruple example, if variable $$x is given as a very complex term, lazily
plugging it in the implementation term would make the runtime system
evaluate it twice.

Our current implementation of the runtime functions is still rudimen-
tary. For example, no “if-then-else” or “where” clause is supported so that
we cannot implement all the functions we need as runtime functions. Hav-
ing a full-blown runtime function implementation is very similar to build a
compiler and runtime system of the functional programming language.

4 Examples

Although it is not usually apparent, many Java developers encounters clo-
sures and higher order functions in their development practices. For ex-
ample, many Java developers first encounter closures when they enclose a
lexical unit of Java code within an anonymous inner class for execution.
This enclosed unit of Java code is executed, on demand, by a higher order
function. For example, the Java code in Listing 5 encloses a method call
within an object of the type java.lang.Runnable.

14

Listing 5: closure example

Runnable worker = new Runnable (){
public void run (){

parseData () ;
}

} ;

The method parseData is literally enclosed (hence the name “closure”)
within the Runnable object instance, worker. It can be passed around be-
tween methods as if it were data and can be executed at any time by sending
a message (called run) to the worker object.

Another example of the usage of closures and higher order functions in
an object-oriented world is the Visitor pattern. Basically, the Visitor pattern
presents a participant called the Visitor, whose instances are accepted by a
composite object (or data structure) and applied to each of the constituent
nodes of that data structure. The Visitor object essentially encloses the
logic to process a node/element, using the accept (visitor) method of the
data structure as the higher order function to apply the logic.

In order to illustrate more specific examples, we implemented the func-
tions given as examples in [1]. The rest of this section summarizes the
implementation details of some of those examples.

4.1 Simple List Processing Functions

Adding up the numbers in a list, multiplying the numbers in a list, and
appending one list of numbers to another list of numbers are some of the
functions that we have implemented. A list is basically defined by

listof X ::= nil | cons X (listof X)

where a cons represents a list whose first element is the X, which may stand
for any type such as “integer”, and whose second and subsequent elements
are the elements of the other list of Xs.

We can define a recursive function sum which will operate on a list and
add the first element of the list to the sum of the others. Therefore, the
definition of sum can be given as

sum nil = 0
sum (cons num list) = num + sum list

The key part here to notice is that only result of the nil case and the addition
operator (+) are specific to the computing a sum. Therefore, this definition

15

can be parameterized and the reduce function, which will be used as a tem-
plate for applying a function f to some x, can be derived.

(reduce f x) nil = x
(reduce f x) (cons a l) = f a ((reduce f x) l)

Hence, sum can be redifined easily in terms of reduce function pattern as
well as creating new functions, such as product.

sum = reduce add 0
product = reduce multiply 1

Java implementation of sum function, renamed as FJsum, is provided in
Listing 6.

Listing 6: Java implementation of sum function

public class FJsum extends Function {
public FJsum() {}
public FJsum(Term l i s t) { super (l i s t) ; }
public Term eva l (boolean l a zy) {

Term tmp = evalParams (1 , l a zy) ;
i f (tmp != null) return tmp ;
i f (parameters . s i z e () > 1)

throw new RuntimeException (‘ ‘ sum : more than 1 arg ’ ’) ;
FJreduce r =
new FJreduce (new FJadd () , new IntValue (0) ,

(Term) (parameters . get (0))) ;
return r . eva l () ;

}
}

4.2 Newton-Raphson Square Roots

Implementation of this method is a very good way of illustrating the power
of lazy evaluation. Newton-Raphson algorithm computes the square root of
a number N by starting from an initial approximation a0 and improving this
approximation using the rule

a(n+1) = (a(n) + N/a(n)) / 2

If the approximations converge to some limit a, then

a = (a + N/a) / 2
2a = a + N/a

16

a = N/a
a*a = N
a = squareroot(N)

Listing 7 shows the Java implementation of this function, renamed as FJsqrt.

Listing 7: Java implementation of sqrt function

public class FJsqrt extends Function {
public Term eva l (boolean l a zy) {

Term tmp = evalParams (3 , l a zy) ;
i f (tmp != null) return tmp ;
Term re s =

createTerm (‘ ‘ with in %2 (repeat (next %3) %1) ’ ’ ,
(Term) parameters . get (0) ,
(Term) parameters . get (1) ,
(Term) parameters . get (2)) ;

return attachRemainingParams (res , 3 , l a zy) ;
}

}

In this implementation, an example of creating a new Term via parsing
a string can be seen.

4.3 Alpha-Beta Heuristic

Alpha-Beta heuristic is an algorithm that is used for estimating how good a
position a game-player is in. This algorithm is mainly used in board game
programs, such as chess, backgammon, and tic-tac-toe, and works by looking
ahead to see how the game might develop.

The first stage is the construction of a gametree, which is essentially a
tree of game positions. An example gametree for tic-tac-toe game is illus-
trated in Figure 2. If we also have a function, call it moves, that takes a
position and generates a tree of possible positions that can be reached from
that position in one move, we can easily define a new function for generating
a gametree as

gametree p = reptree moves p

where reptree applies the given function on every node of the tree. Af-
ter generating the gametree, we can use the function composition notation
(.) and write an evaluation function easily by using the concept of lazy eval-
uation and the basic building blocks that have already been implemented as

17

Figure 2: an example of a gametree for tic-tac-toe

evaluate = max.maximize’.maptree static.prune n.gametree

where prune n prunes the tree at a specific depth in order to prevent it
from growing forever, static evaluates the static board position and as-
signs a number to the position based on its quality, maptree applies the
static function to all available nodes in the tree, and finally max.maximize’

sets the minimax value calculated on that tree to the current position.
Although those algorithms seem to be difficult, the concepts of modular-

ization and code re-use, which are the essence of functional programming,
make it very easy to implement.

5 Conclusions

In this paper, we provided a new design style for implementing functional
programming concepts such as modularity and lazy evaluation in an object-
oriented programming environment which has been chosen to be Java. It
has long been clear that modularity is the key to productive and successful
programming on any platform. The problem for Java developers is that
modular programming entails more than just decomposing a problem into
parts; it also involves being able to glue small scale solutions together into an
effective whole. Since this type of development is inherent to the functional
programming paradigm, it seems natural to use functional programming
techniques when developing modular code on the Java platform. As it may
easily be seen, closures and higher order functions are not completely un-

18

familiar programming concepts for most Java developers, and they can be
effectively combined to create a number of very handy modular solutions.

In order to make the concept easier to understand, we provided some
examples throughout the paper, which are originally taken from Hughes’
paper titled “Why Functional Programming Matters” [1], and implemented
in Java.

References

John Hughes. “Why Functional Programming Matters”. The Computer
Journal, 2(32):98-107, April 1989.

Jeroen Fokker. “Functional Programming”. Department of Computer Sci-
ence, Utrecht University, 1995.

Haskell - A Purely Functional Language. “http://www.haskell.org/”.

Java Programming Language. “http://www.java.sun.com/”.

Gilad Bracha. “Generics in the Java Programming Language”, 2004.

19

