
Cerberus’10 Team Description Paper

H. Levent Akın, Tekin Meriçli, Ergin Özkucur, Can Kavaklıoğlu, and Barış Gökçe

Boğaziçi University, Department of Computer Engineering
34342 Bebek, Ístanbul, TURKEY

{akin, tekin.mericli, nezih.ozkucur, can.kavaklioglu, sozbilir}@boun.edu.tr

1 Introduction

The Cerberus team made its debut in the RoboCup 2001 competition. This was the first
international team participating in the league as a result of the joint research effort of a
group of students and their professors from Boğaziçi University (BU), Istanbul, Turkey
and Technical University Sofia, Plovdiv branch (TUSP), Plovdiv, Bulgaria. The team
competed in all RoboCups between 2001 and 2009 except the year 2004. Currently
Boğaziçi University is maintaining the team. In 2005, despite the fact that it was the
only team competing with ERS-210s (not ERS210As), Cerberus won the first place
in the technical challenges. The team competed in both RoboCup 2008 and RoboCup
2009 competitions with the Nao robots. In 2009, Cerberus made it to the second round
and also got the fifth place in the technical challenges.

From the very beginning, Cerberus has chosen to develop all the components of the
software to form the basis for a more general robotics research rather than to be used
for soccer only. Through the years, the members of the team have done many PhD and
MS Thesis studies related to SPL and published more than 40 papers in journals and
international conferences, including the RoboCup Symposia 1.

The organization of the rest of the report is as follows. The software architecture
is described in Section 3. In Section 4, the details of the vision module are provided.
Self localization method is described in Section 5. The locomotion module and gait
optimization methods used are explained in Section 6. Finally, various approaches we
use for the planning module are described in Section 7.

2 Cerberus Team

– Team Advisor: H. Levent Akın
– Team Members: Tekin Meriçli, Ergin Özkucur, Can Kavaklıoğlu, and Barış Gökçe

3 Software Architecture

The software architecture of Cerberus has been completely re-designed and imple-
mented starting from 2008. The existing modular architecture was transformed into

1 The full list of Cerberus publications are available here:
http://robot.cmpe.boun.edu.tr/˜cerberus/wiki/index.php?n=
Publications.Publications



a more general library architecture, where the code repository is separated into levels
in terms of generality. Similar to the well known Model-View-Control architecture, the
main goal of this new approach was to organize our code base into logical sections,
all of which are easy to access, manipulate, and debug. The rewrite process was origi-
nally targeting the Aibo platform but the well designed architecture has made our initial
development on Nao painless and quick.

Software architecture of Cerberus consists of mainly three parts:

– BOUNLib
– Cerberus Player
– Cerberus Station

Figure 1 illustrates the general structure of our most generic software architecture,
including the Cerberus code base.

Fig. 1. BOUNRobotics software architecture.

3.1 BOUNLib

Past experience has demonstrated the previously used modular approach to be sub-
optimal in some cases. Reuse of source code for multiple architectures and also multiple
purposes, and making specific modifications to the special purpose modules is very time
consuming and error prone.

We collected the more general parts of our code base in a library structure called
BOUNLib. Using this library enables us to develop software for different platforms or
different robots easily by reusing most of our code base, as illustrated in Figure 1.



3.2 Cerberus Station

BOUNLib library includes a versatile input output interface, called BOUNio, providing
essential connectivity services to the higher level processes such as reliable UDP proto-
col, file logging, and TCP connections. Connections are made seamlessly to the sender,
thus there is no need to write specific code for any application or test case.

Using BOUNio library enabled us to implement a very general version of our previ-
ous Cerberus Station using Trolltech’s Qt Development Framework [1]. It is very easy
to test new features to be added to the robot using the well structured architecture of our
runtime code and Cerberus Station. This is a very vital resource for any experiment
involving robots.

The new Cerberus Station has the same features of old its older version and more,
mainly aimed at visualizing the new library based code repository, some of which are
listed below:

1. Record and replay facilities providing an easy to use test bed for our test case
implementations without deploying the code on the robot for each run.

2. A set of monitors which enable visualizing several phases of image processing,
localization, and locomotion information.

3. Recording live images, classified images, intermediate output of several vision
phases, objects perceived, and estimated pose on the field in real time.

4. Log to file and replay at different speeds or frame by frame.
5. Locomotion test unit in which all parameters of the motion engine and special

actions can be specified and tested remotely.

The screen shot in Figure 2 demonstrates some of these features of the new Cerberus
Station software.

3.3 Alternative Architecture

We also tried developing an alternative architecture, where it was possible to create the
fields (i.e. memory entries) at run time and attach events to those fields such that a re-
lated function would be called when the value of the corresponding field is changed. The
architecture also supported callback mechanism. However, due to real-time execution
constraints, we decided not to switch to this new architecture.

4 Vision

4.1 Image Processing and Perception

The purpose of the perception module is to process the raw image and extract available
object features from it. The input to the module is the image in YUV422 format and the
output is the range and bearing values of the perceived objects and landmarks.



Fig. 2. The new Cerberus Station software.

Color Quantization In the raw image format, each pixel is represented with a three-
byte value and can be one of the 2553 values. Since it is impossible to efficiently operate
in such an input space, the colors are quantized into a smaller set of pseudo-colors,
namely, white, green, yellow, blue, robot-blue, orange, red, and “ignore”. We utilize a
Generalized Regression Neural Network (GRNN) [2] for mapping the real color space
to the pseudo-color space.

In order to obtain the outputs of the trained GRNN in a time-efficient manner, a look
up table is constructed for all possible inputs. Y, U, and V values are used to calculate
the unique index and the value at that index gives the color group ID to determine the
color group of a pixel. Figure 3 shows a screen shot from the Labeler component of the
Cerberus Station software, where it becomes possible to visually evaluate the resulting
classification performance of the GRNN right after the labeling and training phases.

Scanline Based Perception Framework Considering that the cameras of the Nao
robots provide higher resolution images and the processors are slower compared to
those of the Aibo robots’, it becomes infeasible to process each pixel to find the ob-
jects of interests in the image due to computational efficiency and real-time constraints.
Therefore, scan lines are used to process the image in a sparse manner, hence speeding
up the entire process.

The process starts with the calculation of the horizon based on the pose of the robot’s
camera with respect to the contact point of the robot with the ground, that is the base
foot of the robot. After the horizon is calculated, scan lines that are 5 pixels apart from



Fig. 3. A classified image constructed with a trained GRNN.

each other and perpendicular to the horizon line are constructed, such that they originate
on the horizon line and terminate at the bottom of the image. The first step after that is
to scan through these scan lines to find where the green field starts, which is done by
checking for a certain number of consecutive green pixels along the line. Of course that
results in a green region where all non-green parts that are close to the edges of the field
ignored, such as the goal posts and balls that are on the border lines. In order to not
lose information about those important objects, a convex-hull is formed for the starting
points of the green segments. That way, we define the real green field borders where all
objects of interests fall inside; hence, we can basically ignore, say all orange regions,
that are outside the field borders. That provides a natural way of pruning false percepts
without having to process them beforehand. After the field borders are constructed, the
shorter scan lines are extended back to these borders, so that it is possible to use them
to detect the goal posts and balls that are close to the borders.

After all these constructions and corrections, each scan line is traced to find colored
segments on them. After only one pass over these scan lines, we end up with groups
of segments with the colors we are interested in, namely, orange, white, blue, and yel-
low. The next step is to build regions from these segments, based on the information on
whether two consecutive segments “touch” each other, that is they are on two consecu-
tive scan lines and either of them has a start or end point within the borders of the other
one. Two consecutive touching segments are merged into a single region. For white
segments though, there are some additional conditions, such as change in direction and
change in length ratio. These additional constraints guarantee that all field lines are not
merged into a single, very big region, but instead into smaller and more distinctive re-
gions. After the construction of these regions, they are passed to the so called the region



analyzer module to be further filtered and processed for the detection of the ball, the
field lines and intersections of them, and the goal posts. Figure 4 shows the result of this
processing, which takes less than 15 ms on the average. The thick red line represents
the calculated horizon, the thin green line group represents the convex-hull, which cor-
responds to the green field border, thin red lines represent the white line segments to be
further processed, the yellow line group represents the yellow goal post base, and the
orange circle represents the detected ball. The egocentric positions of these objects are
computed using the camera matrix and projecting them back on the field.

Fig. 4. Result of processing the image using scan lines.

4.2 World Modeling and Short Term Observation Memory

The perception module of Cerberus provides instantaneous information. While the re-
active behaviors like tracking the ball with the head requires only instantaneous infor-
mation, other higher level behaviors and the localization module needs more than that.

The planning and localization modules require perceptual information with less
noise and more complete information. The world modeling module should reduce sen-
sor noise and complete the missing state information by predicting the state. This is a
state prediction problem and we use the most common approach in the literature, the
Kalman Filter [3], for solving this problem.

In our setting, the observations are the distance and the bearing of the objects with
respect to the robot origin, and the state we want to know consists of the actual distance
and bearing information. In addition to that, for dynamic objects like the ball, the state
vector also includes distance change and bearing change information to aid prediction.



For any object, the observation is z = {d, θ}where d and θ are distance and bearing,
respectively, to the robot origin. For the stationary objects, the state is m = {d, θ} and
the state evolution model is m1

k+1 = I ×mk and zk = I ×mk where k is time and I
is the unit matrix.

For the dynamic objects, the observation is the same but the state is represented as
m = {d, θ, dd, dθ} where dd is the change in distance in one time step and dθ is the
change in bearing likewise. The state evolution model is:

dk+1

θk+1

dd,k+1

dθ,k+1

 =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1




dk
θk
dd,k
dθ,k


and the observation model is:

(
dk+1

θk+1

)
=

(
1 0 0 0
0 1 0 0

)
dk
θk
dd,k
dθ,k


As can be observed from the model specifications, we omit the correlation between

the objects and use filter equations for each object separately. If an object is not observed
for more than a pre-specified time step, the belief state is reset and the object is reported
as unknown. For our case, this time step is 270 frames for stationary objects and 90
frames for dynamic objects.

In the update steps, odometry readings are used. The odometry reading is u =
{dx, dy, dθ} where dx and dy are displacements in egocentric coordinate frame and
dθ is the change in orientation. When an odometry reading is received, all the state
vectors of known objects are geometrically re-calculated and the associated uncertainty
is increased.

The most obvious effect of using a Kalman Filter is that the disadvantage of having
a limited field of view is reduced. As the robot pans its head, it can be aware of distinct
landmarks which are not in the same field of view at the same time.

The world modeling approach described here has an important shortcoming. It as-
sumes that the identities of the observations are known. However with the new rules,
such observations are rare, the observations often come without identity information.
This problem is addressed in the localization module.

5 Self Localization

Cerberus employs vision based Monte Carlo Localization (MCL). In the MCL algo-
rithm, the belief state is represented by a particle set and each element represents a
possible pose of the robot. In Figure 5, a sample belief state is given. We use MCL with
a set of practical extensions (X-MCL) which is detailed in [4]. Until last year, we used
the output of the world modeling module as input to the localization module. Namely
the filtered landmarks are used as observations for the localization module (Figure 6).
However, this year we are modifying the algorithm to filter unidentified observations.



Fig. 5. Belief state of the robot in MCL algorithm.

Identified
Observation 1

Identified
Observation 2

Identified
Observation n

...

Filtered
Observation 1

Filtered
Observation 2

Filtered
Observation n

...

KF

KF

KF

World Model

Particles
PF

MCL

Pose

Fig. 6. Old localization algorithm.

The new approach is inspired from FastSLAM [5] algorithm and Multi-Hypothesis
tracking [6]. In FastSLAM, each particle has its own world model (i.e. map). In Multi-
Hypothesis tracking, there are multiple Gaussians where each relies on a different data
association sequence and their numbers are limited by pruning. Let the world model
be the set of Kalman filters for each landmark. In our localization approach, we main-
tain multiple world models with respect to different observation associations. And each
particle is associated to the world model which is the most likely one for the pose
particle represents. The overview of the new approach is given in Figure 7. With the
new algorithm, we will be able to use line corners and partially observed bars for self
localization.



Unidentified
Observations

World Model 1

World Model 2

World Model m

...

Particle 1
{pose,model}

Particle 2
{pose,model}

Particle 3
{pose,model}

Particle N
{pose,model}

...

Modified MCL

Pose

Fig. 7. New localization algorithm.

6 Motion

Our motion engine has two different infrastructure components, which allow different
levels of abstractions.

– Body: The first infrastructure component determines the properties of the body
of the robot and provides related functionalities; forward and inverse kinematic
models, etc. It is composed of Manipulators which are legs, arms, and head. A
manipulator is used for the functionality of the end effectors. A Manipulator is
a combination of Links, which are used to store the transformation matrix, angle,
and other related kinematic description parameters of each joint. Additionally they
store the mass of the link connected to the next joint. This information is used
for the calculation of center of mass and the zero-moment point. In order to be
platform independent and generic, this infrastructure is defined to be independent
of the robot hardware. The definition of a platform is stored in configuration files
by giving the number of manipulators and links, kinematic parameters, masses for
each link, etc.

– Locomotion: A root engine is defined at the very top level and the common proper-
ties and functions of each different locomotion engine are included in it. Different
locomotion engines are inherited from the root engine. Platform and locomotion al-
gorithm specific parts are defined in the inherited engines. For the Nao robot, three
main features are implemented. The first one is a dynamic walking feature. A signal
generation-based algorithm, which is very similar to Central Pattern Generator [7]
is used. The motion of the head is separated from the motion of the rest of the body
and implemented as the second component. The last feature is the motion player,



which reads the sequential joint angles from pose definition files and plays them to
realize some special actions, such as kicking the ball and standing up from a fallen
position.

6.1 Bipedal Locomotion

Model-Driven CPG-Based Biped Walking A walking method based on that of the
champion of the Humanoid League in the RoboCup07, NimbRo [8], is implemented.
They defined three important features for each leg; leg extension, leg angle, and foot an-
gle. Leg extension is the distance between the hip joint and the ankle joint. It determines
the height of the robot while moving. Leg angle is the angle between the pelvis plate
and the line from hip to ankle. It has three components; roll, pitch, and yaw. The third
feature, foot angle, is defined as the angle between foot plate and pelvis plate. It has
only two components; roll and pitch. Using these features helps us have more abstract
calculations for the motion.

Before finding motion features, a central clock (φtrunk) is generated for the trunk
which is between −π and π. Each leg is fed with a different clock (φleg) with ls× π/2
phase shift where ls represents leg sign and it is−1 for the left leg while +1 for the right
leg. The synchronization of the legs can be preserved in this way. In the calculations of
motion features at a given time, the corresponding phase value is considered and the
values for features are calculated by using these phase values.

In order to find the leg angle and foot angle features, motion at each step is divided
into five sub-motions; shifting, shortening, loading, swinging, and balance.

In the shifting sub-motion, lateral shifting of the center of mass is handled. For
this purpose, a sinusoidal signal is simulated. The second important sub-motion is the
shortening signal and it is not always applied. During the shortening phase, both a joint
angle for the foot and a part of the leg extension value are calculated as a cosine function
of the shortening phase value. The third sub-motion of the step is loading which is also
not always applied. In this phase, only a part of the leg extension is calculated as that of
shortening phase. Swinging is the most important part of the motion. In this part, the leg
is unloaded, shortened and moved along the way of motion which reduces the stability
of the system considerably. This movement has effects on each component of the leg
and the foot angle features of the motion. As the last component of the step, which is
balance, correction values for the deviations of the other operations are added to the
system from the foot angle feature and the rolling component of the leg angle feature.
At the end, the corresponding parts of the sub-motions are added, and the values for the
motion features are calculated.

Because balance is not guaranteed in the model, and it is impossible to optimize
the model with the maximum speed analytically, our biped walking is defined in terms
of some parameters. After determining a feasible parameter set by hand, we applied an
optimization algorithm, Evolutionary Strategies, to fine-tune the walking motion. Al-
though both speed and balance is used in the fitness function, our walk engine is an
open-loop engine during the game and it is vulnerable on the accumulation of balance
disturbance. In order to compensate these disturbances, we are working on how to ob-
tain a feedback from the sensors and estimate the state of the robot. For this purpose, we



log the readings of foot pressure and accelerometer sensors and simulate our walking
style with the readings in Matlab, as can be seen in Figure 8.

Fig. 8. Changes on the foot sensor reading while walking.

Aside from the implementation inspired from the work of the NimbRo team, we
have also developed a CPG-based custom algorithm for bipedal walking. In our design,
the main walking motion starts from the hip, specifically the roll joint, which makes the
body to swing from one side to the other. In order to keep the feet parallel to the ground
while swinging, the ankle roll joint angles should be set to the negative of the value of
the corresponding hip roll joint angle. The periodic movement of the hip is obtained by
using a sinusoidal signal to be supplied as the hip roll joint angle. In order to realize
this movement, the hip roll and ankle roll angles are set according to the following
equations.

θhiproll=Ahiproll
sin(period)

θankleroll=−Aankleroll
sin(period)

This motion is the basis of the entire walking since it passes the projection of the center
of mass from one foot to the other periodically, letting the idle foot to move according
to the requested motion command.

In order to make the robot perform a stepping motion, the pitch joints on the leg
chain should be moved. These joints again take sinusoidal angle values which are con-
sistent with the hip roll angle. The following equations illustrate how the values of these
angles are computed.

θhippitch = Apitchsin(period) + θhiprest
pitch

θkneepitch = −2Apitchsin(period) + θkneerest
pitch

θanklepitch = Apitchsin(period) + θanklerest
pitch



The Apitch value determines how big the step is going to be. Obtaining backwards
walk does not require much work but just reversing the iteration of the period value,
which is defined as 0 < period < 2π.

Similarly, making the robot move laterally is possible by setting the roll angles in-
stead of the pitch angles together with the knee pitch, while turning around is possible
by setting the hipY awPitch joint angles properly. The amplitudes Apitch, Aroll, Ayaw
are multiplied with the corresponding motion component, namely forward, left, turn
which are normalized in the interval [−1, 1], to manipulate the velocity of the motion.
In order to make the robot move omnidirectionally, the sinusoidal signals that are com-
puted individually for each motion component are summed up and the final joint angle
values obtained in that way. For instance, it is possible to make the robot walk di-
agonally in the north-west direction by simply assigning positive values to both the
forward and the left components.

7 Planning

The soccer domain is a continuous environment, but the robots operate in discrete time
steps. At each time step, the environment, and the robots’ own states change. The plan-
ner keeps track of those changes, and decides the new actions. The main aim of the
planner is to sufficiently model the environment and update its status. Second, the plan-
ner should provide control inputs according to this model.

7.1 Market Based Approach

For coordination among the teammates and task allocation, we have so far employed
a market driven task allocation scheme [9, 10]. In this method, the robots calculate a
cost value (their fitness) for each role. The calculated costs are broadcasted through
the team and based on a ranking scheme, the robots pick the most appropriate role for
their costs. Here, each team member calculates costs for its assigned tasks, including
the cost of moving, aligning itself suitably for the task, and the cost of object avoidance,
then looks for another team member who can do this task for less cost by opening an
auction on that task. If one or more of the robots can do this task with a lower cost,
they are assigned to that task, so both the robots and the team increase their profit. The
other robots take actions according to their cost functions (each takes the action that is
most profitable for itself). Since all robots share their costs, they know which task is
appropriate for each one so they do not need to tell others about their decisions and they
do not need a leader to assign tasks. If one fails, another would take the task and go on
working.

7.2 Dec-POMDP based Planner

We have started developing a DEC-POMDP based planner which uses an extended,
scalable version of the approach described in [11]. In this approach the team uses an
off-line learned policy during the games. The metrics in [12] form the basis of the
rewards in the learning process. This was first tested in October 2009 at the Athens
Digital Week during a friendly game against the Kouretes team.



7.3 Hierarchical Planner

The planner architecture we have used in the previous years had some design prob-
lems. This section describes a new hierarchical planner architecture addressing these
problems.

Requirements

– Behavior Design: Our previous Finite State Machine (FSM) based planner module
required several C++ classes to implement a given single behavior. Although this
seemed like an appropriate requirement at first, we have realized that it is impera-
tive to first design the behavior before implementing it. As expected the common
software engineering practices are in effect in behavior design as well. The plan-
ning architecture should in some way force the developer to design the behavior to
be implemented.

– Development Speed: Implementing a few C++ classes was never fast enough.
Considering the compiling, loading the code to the robot and rebooting the ap-
plication cycle, planning development with a strictly compiled language quickly
becomes a burden. Especially in the case of developing a planner module, which
requires empirical specification of magical numbers for behavior implementations,
development and testing cycle speed is of crucial importance.

– Architecture Concerns: FSM based architectures have been the initial choice for
most planner architectures. These provide a convenient and complete state defi-
nition for the agent. The problem with applying FSM based planners in highly
dynamic environments, such as robotic soccer, is the sources of uncertainty that
are present in the environment. The state determination procedure, which is based
on the uncertain perception information, may not always be able to determine the
correct state. Handling such a fast paced environment with an FSM based planner
requires a lot of work mainly because FSM requires connections between all nodes
to be able to cope with all possible choices of a highly dynamic environment.

Proposed Planner Architecture To handle the dynamics of the environment, which
may be due to imperfect perception or rapid changes in the environment, a hierarchi-
cal planner architecture is proposed. The inspiration comes from the following simple
principle “the planning module must come up with a rational decision at any time”.

In an FSM based planner, the selected state defines all of the current actions as well
as the possible next states. Although levels of FSMs can be defined to handle different
possible actions, a much simpler hierarchical architecture is sufficient for coding the
required behaviors.

The hierarchical architecture is represented as a tree, where each node of the tree
corresponds to a specific behavior. An example is provided in Figure 9. Each node is
responsible for deciding on its activation condition and run time behavior. If a node’s
activation condition is met, then that node’s children are also triggered. In this recursive
manner a given behavior tree is traversed in depth first order. Making sure the correct
node is activated at any given time is the job of the behavior designer.



Fig. 9. An example behavior tree.

Implementation The behavior tree is specified using a configuration file. The config-
uration file of the behavior tree of Figure 9 is given in the Figure 10. This meets the
behavior designing requirement since it enforces the behavior designer to first code the
global design in a separate file.

behaviors/robocup/
Initial

#DoNothing
Ready
GoToPose initPose
Forward
Left
Turn

Set
Play
Finish

Fig. 10. An example behavior configuration file.

In the configuration file, the developer specifies the location of the corresponding
behavior code on the first line. All other lines represent nodes in the configuration tree.
A single space before a behavior name means that the node is a child node of a node
give specified above. Lines starting with a hash symbol are comments.

The configuration file is parsed by a Python script, which generates the behavior
tree at run time and starts triggering the nodes defined by the corresponding Python
scripts. If a node code is changed, the tree can be generated again at run time without
any need for reboot or compiling, which satisfies the second requirement. Changes to
the node code can be performed on the robot’s system and the run time reloading can
be performed by a signal sent over the network. Furthermore specifying behavior nodes
is quite a simple task. Figure 11 presents an example behavior, which is specified with
only 10 lines of Python code. Thus rapid testing can be performed with a very fast
develop/test cycle.



import ppm
class Finish(ppm.PlannerNode):

name = "Finish"
def activationCondition(self) :

if self.mem[’robot’].gameState ==
self.mem[’robot’].gameState.FINISHED:

return True
else :

return False
def run(self) :

self.mem[’robot’].motionCommand_vision.actionType =
self.mem[’naolib’].BodyActions.actSitDown

Fig. 11. An example behavior node definition.

8 Acknowledgements

This work is supported by Boğaziçi University Research Fund through project 09M105,
and TUBITAK Project 106E172.

References

1. Trolltech’s Qt Development Framework. http://trolltech.com/products.
2. Ethem Alpaydın. Machine Learning. MIT Press, 2004.
3. Greg Welch and Gary Bishop. An introduction to the kalman filter. Technical report, Chapel

Hill, NC, USA, 1995.
4. K. Kaplan, B. Çelik, T. Meriçli, Ç. Mericli, and H. L. Akın. Practical extensions to vision-

based monte carlo localization methods for robot soccer domain. RoboCup 2005: Robot
Soccer World Cup IX, LNCS, 4020:420–427, 2006.

5. M. Montemerlo. FastSLAM: A factored solution to the simultaneous localization and map-
ping problem with unknown data association. In CMU Robotics Institute, 2003.

6. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Cambridge, MA,
2005.

7. C. Pinto and M. Golubitsky. Central pattern generators for bipedal locomotion. J Math Biol,
2006.

8. Sven Behnke. Online trajectory generation for omnidirectional biped walking. 2006.
9. H. Köse, Ç. Meriçli, K. Kaplan, and H. L. Akın. All bids for one and one does for all:

Market-driven multi-agent collaboration in robot soccer domain. Computer and Information
Sciences-ISCIS 2003, 18th International Symposium Antalya, Turkey, Proceedings LNCS
2869, pages 529–536, 2003.

10. H. Köse, K. Kaplan, Ç. Meriçli, U. Tatlıdede, and H. L. Akın. Market-driven multi-agent
collaboration in robot soccer domain. Cutting Edge Robotics, pages 407–416, 2005.

11. Baris Eker and H. Levent Akin. Using evolution strategies to solve DEC-POMDP problems.
SOFT COMPUTING, 14(1):35–47, JAN 2010.

12. Cetin Mericli and H. Levent Akin. A Layered Metric Definition and Evaluation Framework
for Multirobot Systems. In Iocchi, L and Matsubara, H and Weitzenfeld, A and Zhou, C,
editor, ROBOCUP 2008: ROBOT SOCCER WORLD CUP XII, volume 5399 of Lecture Notes
in Computer Science, pages 568–579, 2009.


