
Cerberus’08 Team Report

H. Levent Akın1

Çetin Meriçli1

Tekin Meriçli1

Barış Gökçe1

Ergin Özkucur1

Can Kavaklıoğlu1

Olcay Taner Yıldız2

1Artificial Intelligence Laboratory
Department of Computer Engineering

Boğaziçi University

34342 Bebek, İstanbul, Turkey

2Department of Computer Engineering
Işık University

Sile, İstanbul, Turkey
{akin, cetin.mericli, tekin.mericli}@boun.edu.tr

{sozbilir, nezih.ozkucur, can.kavaklioglu}@boun.edu.tr
olcaytaner@isikun.edu.tr

November 1, 2008

Contents

1

1 Introduction 2

2 Software Architecture 3
2.1 BOUNLib . 3
2.2 Cerberus Station . 3
2.3 Cerberus Player . 4

2.3.1 Common library . 4
2.3.2 Vision library . 5
2.3.3 Planner library . 5
2.3.4 Robot specific elements 5
2.3.5 Cerberus Player Module on Nao 5

3 Vision 10
3.1 Image Processing and Perception 10

3.1.1 Color Classification . 10
3.2 Scanline Based Perception Framework 12

3.2.1 Vision Object . 12
3.2.2 Goal Perception . 12
3.2.3 Line Perception . 16
3.2.4 Goal Target Perception 17
3.2.5 “On Goal Line” Perception 17
3.2.6 Distance Calculations 18

4 Localization 19
4.1 World Modeling and Short Term Observation Memory 20
4.2 Localization . 21

5 Motion 25
5.1 Motion Engine . 25
5.2 Implemented Biped Walking Algorithms 26

5.2.1 Static Walking with CoM Criterion 27
5.2.2 Dynamic Walking with CPG Method 27

i

6 Planning and Behaviors 37

1

Chapter 1

Introduction

The Cerberus team made its debut in RoboCup 2001 competition. This
was the first international team participating in the league as a result of the
joint research effort of a group of students and their professors from Boğaziçi
University (BU), Istanbul, Turkey and Technical University Sofia, Plovdiv
branch (TUSP), Plovdiv, Bulgaria. The team competed in Robocup 2001-
2008 except the year 2004. Currently Boğaziçi University is maintaining the
team. In 2005, despite the fact that it was the only team competing with
ERS-210s (not ERS210As), Cerberus won the first place in the technical
challenges. In the Robocup 2008 organization [1], a new league, named the
Standard Platform League (SPL) [2], was introduced. In this league, the
Nao humanoid robots manufactured by Aldebaran Robotics [3] are used as
the standard robot platform and no hardware modifications are allowed as
was the case for the 4-Legged League with Aibo robots. Cerberus competed
in both the 4-legged and the 2-legged categories of the SPL in 2008 and
made it to the quarterfinals, losing to the eventual champion in the 4-legged
category.

The organization of the rest of the report is as follows. The software
architecture is described in Chapter 2. In Chapter 3, the algorithms behind
the vision module are explained. The main localization algorithm is given in
Chapter 4. The planning module is described in Chapter 6. The locomotion
module and gait optimization methods used are explained in Chapter 5.

2

Chapter 2

Software Architecture

Software architecture of Cerberus has been completely rewritten in 2008.
The existing modular architecture was transformed into a more general li-
brary architecture, where the code repository is separated into levels in terms
of generality. Similar to the well known Model-View-Control architecture,
the main goal of this new approach was to organize our code base into logical
sections all of which are easy to access, manipulate and debug. The rewrite
process was originally targeting the Aibo platform but the well designed
architecture has made our initial development on Nao painless and quick.

Software architecture of Cerberus consists of mainly three parts:

• BOUNLib

• Cerberus Player

• Cerberus Station

2.1 BOUNLib

Past experience has demonstrated the previous modular approach to be sub-
optimal in some cases. Especially considering issues such as reuse of source
code for multiple architectures and also multiple purposes, making specific
modifications to the special purpose modules becomes very time consuming
and error prone.

We have started collecting general parts of our code base in a library
structure called BOUNLib. Using this library will enable us to easily code
for different platforms or different robots by reusing most of our code base.

2.2 Cerberus Station

BOUNLib library includes a versatile input output interface, called BOUNio,
providing essential connectivity services to the higher level processes such

3

as reliable UDP protocol, file logging, and TCP connections. Connections
are made seamlessly to the sender, thus there is no need to write specific
code for any application or test case.

Using BOUNio library enabled us to implement a very general version of
our previous Cerberus Station using Trolltech’s Qt Development Framework
[4]. Using the well structured architecture of our runtime code and Cerberus
Station, it is very easy to test new features to be added to the robot, which
is a very vital resource for any research experiment.

Cerberus Station is designed to have the same features of old Cerberus
Station and more, mainly aimed at visualizing the new library based code
repository, some of which are listed below:

1. Record and replay facilities providing an easy to use test bed for our
test case implementations without deploying the code on the robot for
each run.

2. A set of monitors which enable visualizing several phases of image
processing, localization, and locomotion information.

3. Recording live images, classified images, intermediate output of several
vision phases, objects perceived and estimated pose on the field in real
time.

4. Log to file and replay at different speeds or frame by frame.

5. Locomotion test unit in which all parameters of the motion engine and
special actions can be specified and tested remotely.

2.3 Cerberus Player

Following the same design pattern, Cerberus Player code base was also
switched to a more robust library structure instead of the previous static
modular approach. The new design consists of four main elements:

• Common library

• Vision library

• Planner library

• Robot specific elements

2.3.1 Common library

The Common library is dedicated to containing robot data and their primi-
tive functions such as serialization/deserialization. The primary element of
the Common library is the Robot class, which defines the data elements a

4

robot needs to keep track of in the run time. The Robot class can be con-
sidered as the state vector of the robot at a time. Using this single source
of data greatly simplifies some of the architectural constraints. Other ele-
ments of the Common library include, sensor related, vision related classes
and configuration related classes.

2.3.2 Vision library

The Vision library is designed to accommodate multiple vision algorithms
seamlessly. Using such a standard interface provides a great visual research
platform, where any new algorithm can be tested easily and thoroughly.
Using our new approach, it will be possible to test our existing vision algo-
rithms against the new scanline alternatives, providing us a very fruitful test
environment to compare multiple techniques and reach precise conclusions
with thorough analysis.

2.3.3 Planner library

The Planner library is refactored with the new architecture. Having a Plan-
ner library enables us to use the implemented planning facilities on other
platforms as well.

2.3.4 Robot specific elements

Any general code requires a point of connection to a specific architecture.
Robot specific elements provide the bindings between the library compo-
nents and the robot hardware.

2.3.5 Cerberus Player Module on Nao

There are two ways for a controller to use (or communicate with) NaoQi on
the Nao robot.

• The first way is to develop a different executable other than MainBro-
ker which runs as a separate process and communicates with Main-
Broker over network (Figure 2.1).

• The second way is to develop a new module and loading it along with
the MainBroker. This way, function calls are faster (Figure 2.2).

The user modules which are loaded with MainBroker are less safe than
a separate process. If an exception occurs, all the hardware controller would
crash and cause hardware damage. However, this method is faster than
separate process.

A soccer playing system is very complicated and there is always a high
possibility of getting run time exceptions especially during development.

5

Figure 2.1: Safe user controller and MainBroker.

Figure 2.2: Unsafe but faster user controller and MainBroker.

6

On the other hand, such a system should be as fast as possible. After
considering the circumstances, we developed our system to support both
execution methods. The separate process method is used frequently in early
development of system components, and module loading method is used for
testings in real time.

Our soccer playing system is basically a module which uses other mod-
ules. Except actual soccer related components, this module has two main
jobs for hardware management; image synchronization and the motion man-
agement.

Image Synchronization Process

Current Nao platform has one camera. The camera can provide 5, 15 or 30
frames in one seconds optionally. The raw format of the image is YUV422.
In the YUV422 format, the colors are represented with three channels as
Y U and V. Each consecutive two pixels share same U and V values. In
Figure 2.3, the memory layout of the image format is given.

Figure 2.3: Memory layout of the YUV422 image format.

To take images from the camera, first a proxy is created and connected to
ALVision module. Before taking images, camera settings are set, which are
in our case 15 frames per second, YUV422 image format, 320x240 resolution
and auto white balance disabled. After setting the parameters, a new thread
is created which will constantly request an image from the ALVision module
and process all related works. After process is finished, instead of immediate
request of the new image, the thread is put to sleep state. The sleep time is
estimated as in the algorithm given in Figure 2.4.

Motion Manager Process

Motion manager process is a separate thread and is responsible for con-
stantly sending the most recent servo commands to the ALMotion module.

Synchronization of Image and Motion Manager Process

There is a constant data exchange between the motion management pro-
cess and the image fetching process. The planning algorithm (explained in
Chapter 6) sends motion commands to the motion manager and in turn it
sends the odometry values to the localization algorithm. Note that both the

7

1: NewImage← 0
2: PreviousImage← 0
3: while true do
4: NewImage← FetchImage()
5: while NewImage = PreviousImage do
6: sleep 2 ms
7: NewImage← FetchImage()
8: end while
9: b← time()

10: Process Image
11: elapsedT ime← time()− b
12: if elapsedT ime < 1000/15 then
13: sleep for 1000/15− elapsedT ime ms
14: end if
15: end while

Figure 2.4: Image fetching algorithm.

planning and localization algorithms are executed by the image processing
thread right after the perceptual algorithms’ termination.

As explained in 2.1, all the data are represented in BOUNCore class
which is created uniquely for all the system. The odometry and motion
commands are included in the BOUNCore class and synchronization be-
tween the two threads must be done. In Figure 2.5, the synchronization
between two threads is shown.

8

Figure 2.5: Synchronization between image process thread and motion man-
ager thread.

9

Chapter 3

Vision

3.1 Image Processing and Perception

The purpose of the perception module is to process the raw image and
extract available object features from the image (bearing and range if avail-
able). The input to the module is the image in YUV422 format as explained
in 2.3.5 and the output is the range and bearing features of seen objects on
the field. The two main parts of this module are color classification and
perception.

3.1.1 Color Classification

In the raw image format, each pixel is represented with a three-byte value
and can be one of the 2553 values. Since it is impossible to efficiently operate
on such an input space, the colors are classified into fewer color groups. Each
group represents a possible color on the environment. These are white,
green, yellow, blue, robot-blue, orange, and red. There is actually one more
group which stands for none of the groups and noted as the “ignore” group.

To summarize the problem, we have an image with a resolution of
320x240, where each pixel has a range of 2553 values and we want to assign
each pixel to one of the eight color groups. This is a regression problem
and we used Generalized Regression Neural Network (GRNN) to solve this
problem [5]. GRNN is a neural network which can approximate a function
(linear or nonlinear) with n dimensional domain to m dimensional output
domain.

In our problem, input space has three dimensions and output space has
eight dimensions. In the output, the value with index of the target color
group has the value of one while all other values have value of zero. To
reduce the complexity of the algorithm, we omitted two bits from Y channels
and four bits from U and V channels. The new input space is still three
dimensional but has a range of 2× 6× 24 ∗ 24.

10

Before training a GRNN network, a training set must be formed. For
this purpose, we use our Labeler software. In the Labeler, an image in its
raw format is converted to RGB format and displayed. The user marks
sample pixels with their color group. When sufficient number of samples
are collected from different images, it is saved as the training set. In Figure
3.1, a screen shot from Labeler software is shown.

Figure 3.1: Screenshot from Labeler software. Grey region is the ignored
color group.

After the ceation of the training set, GRNN is trained. To efficiently
get outputs from the GRNN network, a look up table is constructed for all
possible inputs. To look up the color group of a pixel, Y, U and V values
are used to calculate the unique index and the value at that index gives
the color group ID. In Figure 3.2, output of a trained GRNN is tested on a
sample image.

Figure 3.2: A classified image constructed with a trained GRNN.

11

3.2 Scanline Based Perception Framework

Scanline based vision framework was introduced this year to exploit sev-
eral advantages of scanline based perception systems over blob based vision
systems.

The most significant improvement over blob based systems is the in-
creased reasoning possibilities. Using a single scanline it is possible to de-
tect a line segment by simply tracking the change in color of the pixels on
the scanline. Furthermore, it is possible to combine information gained by
multiple scanlines providing further spatial information about the structures
available in the current image. In our previous blob based perception system
such extensive and precise reasoning was not possible.

Scanline perception framework is also more scalable. The complexity
of the system can be changed automatically in run time, by adjusting the
number of scanlines per image. Since only the pixels on the scanlines are
segmented, segmentation overhead of the blob based systems can also be
avoided.

Inspecting a region of the image with a set of scanlines can provide a fast
and accurate method of reasoning about the confidence of the perception.
Such confidence values are very crucial for the performances of higher level
modules. Further probabilistic methods will be employed to increase utility
of these confidence values in the future.

In the following parts of this section, the implemented scanline based
perception methods will be described in detail.

3.2.1 Vision Object

The Vision object instantiates other perception methods after generating
some information which is required by all of the specialized perception
classes.

The image received from robot’s camera is first scanned with several
scanlines. The number of these scanlines can be altered according to the
viewing angle of the camera, however currently this feature is left as future
work.

Once pixels corresponding to the scanlines are segmented, this segmented
and ordered set of pixels are traversed once for important points, defined
by each specialized perception method. Selected subsets of the segmented
pixels are then sent to specialized perception classes for further processing
and object detection.

3.2.2 Goal Perception

This section describes the most extensive specialized perception class, which
is designed for goal perception. Processing starts with the input of the vision

12

object, indicating the important points for this specialized perception class.
The goal of the scanline based goal perception is to detect the goal bars

individually so that multiple landmarks can be perceived from a single goal.
A four stage procedure is designed to achieve this purpose, which can be used
to perceive left and right goal bars individually. Due to the generic design of
the perception stages and the underlying scanline framework, implementing
top and bottom bars is only a task of mirroring left and right bar perceptors.
Similarly beacon perception will be only a variation of the bar perception.

Tests of the perceptor are done using the new version of the Cerberus
Station, a screen shot of which is shown Figure 3.2.2. Using this visual tool
greatly enhances the testing procedure. Employing the BOUNio library it
is possible to observe run time performance as well as to inspect recorded
logs within the goal perception tester tool.

Figure 3.3: Cerberus Station Goal Perception Test Tool.

The goal perception task is divided between several classes, namely main
vision object, goal perceptor, goal bar perceptor, and bar perceptor. The
bar perceptor performs the four stage bar perception procedure, the goal
bar perceptor investigates if the found bar is the correct bar, and the main
vision object initiates the procedure.

Initially the main vision class runs a series of scanlines perpendicular to
the horizon plane and classifies the YUV image along these scanlines (see

13

Figure 3.2.2). Using this procedure it is possible to avoid classifying all of
the image, which accounts to a large portion of the computational cost in
previous implementations.

Figure 3.4: Important points.

Generated classified points, called important points are passed to the
goal perceptor class. There are four goal bar perceptor classes, one for each
vertical bar of the two goals, blue left, blue right, yellow left, yellow right.

Each of these goal bar perceptors have three bar perceptors. Each goal
perceptor inspects all of these three bar perceptions to pick the best candi-
date to be chosen as the perceived goal bar.

Finally the bar perceptor follows a four stage procedure to detect the
goal bar candidates as follows (see Figure 3.2.2):

1. Find vertical base: The important points are scanned for the largest
continuous segment of the given color (blue or yellow in this case).
The segment can be discontinued with a value defined by a constant,
which can be adjusted according to the performance of the available
classification .

2. Ranger lines: From the detected vertical base, perpendicular scan-
lines are drawn to locate the ends of the colored region.

3. Bound detection: Ranger lines are passed through a histogram func-
tion to find the most likely edge of the bar.

4. Bounding box: The four corners of the detected bounds are stored
as the perceived bar plane.

14

(a) Vertical bases. (b) Ranger lines for the largest vertical base.

(c) Bounding lines. (d) Final bounding box.

Figure 3.5: Four stages of bar perception

15

Once candidate bars are generated, respective goal bar perceptors search
for the best available vertical goal bar of their respective colors. To achieve
quantified confidence results, goal bar perceptors draw squares, scaled to
the size of the perceived bar, around the expected positions of the colored
regions, as shown in Figure 3.2.2a. Within these squares scanlines are run to
detect the ratio of pixels with the requested color. Figure 3.2.2b shows the
resulting confidence values. Observations indicate false positive frequency
is very low with confidence values greater than 0.5.

(a) Confidence regions drawn for all possible
left blue vertical goal bars.

(b) Final confidence values for left and right
blue vertical goal bars.

Figure 3.6: Final perception.

3.2.3 Line Perception

Line perception is implemented in a similar fashion with the goal target
perception. The main vision object supplies the important points for the line
perception, which is, in this case, defined as the mid point of a green-white
transition and a consecutive white-green transition on a single scanline.

First, the best possible fitting lines are found for the current important
points with least squares line fitting. Using these lines a circle detection
algorithm runs, trying to find the center circle of the field. In case the
middle circle is found, no further processing is done. Since there are many
intersection points on the center circle lines, proceeding further with corner
detection gives false positive results. Besides, finding the center circle is very
informative as it is.

In case the center circle is not found, corner detection algorithm is run
to find the corners formed by the detected lines. After several sanity checks,
the found corners are marked as the perceived corners.

16

3.2.4 Goal Target Perception

Using the available scanline perception framework it is quite easy to im-
plement simple perceptions quickly having all the robust properties of the
scanline vision technique. Goal target perception presents a good example
for such a case.

In order to score a goal, a goal target perception is required, so that the
robot can shoot at the correct spot. Localization can generally be relied
upon to figure out the direction of the goal, however it can not be trusted
for precise shooting due to high level of noise.

This perception method provides a more limited but more accurate ap-
proach to be used as a precise goal target on the perceived image, once the
robot is assumed to be actually facing the goal. There are sanity checks in
place to avoid shooting in case the robot does not actually face the goal.

The important points for this very specialized perception are the points
colored with the opponent team’s goal color. These points are traversed for
the largest continuous region obeying the sanity checks. If no such region is
found, goal target perception can set goal target to be unknown and avoid
shooting to a completely obstructed goal or even worse to any other random
direction. If the region is found as an appropriate goal target, its center is
marked as the goal target.

3.2.5 “On Goal Line” Perception

The most specialized perception is “on goal line” perception which provides
a signal to the goal keeper to help the robot with its localization. Once
the goal keeper roughly gets around the goal line, it can be quite hard
to get localized precisely. Since the opponent goal is quite far away and
generally obstructed, it can rarely be used in localization, which degrades
the performance of the localization.

To help the goal keeper in such situations, “on goal line” perception
signals the goal keeper that it is standing on the goal line. The planner
module of the goal keeper turns the robot’s head from one side to the other
all the time, searching for a possible ball to save. This behavior frequently
results in a particular sequence of perceptions when the goal keeper is on
the goal line, which are the own goal bar perception - corner perception -
corner perception - own goal bar perception, respectively.

“On goal line” perception looks for such sequences and generates a signal
indicating the goal keeper is on the goal line, which can be used to align the
goal keeper more precisely to improve chances for a better goal saving and
localization performance.

17

3.2.6 Distance Calculations

To calculate the distance of a visually observed object, either a stereo vision
system or using consecutive frames of single camera as stereo vision is needed
[6]. The Nao robot has a single camera but the sizes of the objects in the
environment are fixed and known. The distances of objects can be inferred
by the size feature of the objects. In visual observations, the size of an object
can be measured by the width or height of the object in pixels. As the object
gets closer, the size of the object in the image increases and this increase
has a nonlinear relationship with the actual distance of the object. In our
approach, we represent this relationship with the function y = a× (xb) + c
where y is the distance, x is the width or height of the object in pixels, and
a, b and c are parameters of the function.

Now the problem is reduced to finding the three optimal values for a, b
and c. To optimize these parameters, a training set is collected from the en-
vironment and the parameters are estimated with the least squares method.
The pixel widths are found from the classified image, so this training proce-
dure is repeated for each object type and after each color calibration process
which was explained in section 3.1.1.

18

Chapter 4

Localization

Currently, Cerberus employs three different localization engines. The first
engine is an inhouse developed localization module called Simple Localiza-
tion (S-LOC) [7]. S-LOC is based on triangulation of the landmarks seen.
Since it is unlikely to see more than two landmarks at a time in the current
setup of the field, S-LOC keeps the history of the percepts seen and modifies
the history according to the received odometry feedback. The perception
update of the S-Loc depends on the perception of landmarks and the pre-
vious pose estimate. Even if the initial pose estimate is provided wrong, it
acts as a kidnapping problem and is not a big problem as S-Loc will converge
to the actual pose in a short period of time if enough perception could be
made during this period.

The second one is a vision based Monte Carlo Localization with a set
of practical extensions (X-MCL) [8]. The first extension to overcome these
problems and compensate for the errors in sensor readings is using inter-
percept distance as a similarity measure in addition to the distances and
orientations of individual percepts (static objects with known world frame
coordinates on the field). Another extension is to use the number of per-
ceived objects to adjust confidences of particles. The calculated confidence
is reduced when the number of perceived objects is small and increased when
the number of percepts is high. Since the overall confidence of a particle is
calculated as the multiplication of likelihoods of individual perceptions, this
adjustment prevents a particle from being assigned with a smaller confidence
value calculated from a cascade of highly confident perceptions where a sin-
gle perception with lower confidence would have a higher confidence value.
The third extension is related with the resampling phase. The number of
particles in successor sample set is determined proportional to the last cal-
culated confidence of the estimated pose. Finally, the window size in which
the particles are spread into is inversely proportional to the confidence of
estimated pose. This engine was used in both Aibo and Nao games.

The third engine is a novel contribution of our lab to the literature,

19

Reverse Monte Carlo Localization (R-MCL) [9]. The R-MCL method is a
self-localization method for global localization of autonomous mobile agents
in the robotic soccer domain, which proposes to overcome the uncertainty
in the sensors, environment and the motion model. It is a hybrid method
based on both Markov Localization (ML) and Monte Carlo Localization
(MCL) where the ML module finds the region where the robot should be
and MCL predicts the geometrical location with high precision by selecting
samples in this region (Fig. 4.1). The method is very robust and requires
less computational power and memory compared to similar approaches and
is accurate enough for high level decision making which is vital for robot
soccer. This method is still in testing and we are planning to integrate it in
our system in 2009.

Figure 4.1: R-MCL Working Schema.

4.1 World Modeling and Short Term Observation
Memory

The perception module provides instantaneous information. While reactive
behaviors like tracking the ball by head requires only instant information,
other higher level behaviors and localization module needs more.

The planning and localization modules, a perceptual information with
less noise and more complete. The world modeling module should reduce
sensor noise and complete the missing state information by predicting the
state. This is a state prediction problem and we use the most common
approach in the literature which is the Kalman Filter [10].

The Kalman filter assumes the noise in both prediction and update steps
have Gaussian distribution. A linear state evolution and perceptual model
is required to apply Kalman filter. If the models are non-linear Extended

20

Kalman Filter can be used where models are linearized by Taylor Series.
In our problem, the observations are distance and the bearing of the

objects with respect to robot origin. And the state we want to know is actual
distance and bearing informations. In addition for the dynamic objects like
the ball, the state vector also includes distance change and bearing change
information to ease prediction.

For any object, the observation is z = {d, θ} where d and θ are distance
and bearing respectively to the robot origin. For the stationary objects state
is m = {d, θ} and the state evolution model is m1

k+1 = I∗mk and zk = I∗mk

where k is time and I is the unit matrix.
For the dynamic objects, the observation is the same but state is repre-

sented as m = {d, θ, dd, dθ} where dd is the change in distance in one time
step and dθ is the change in bearing likewise. The state evolution model is:




dk+1

θk+1

dd,k+1

dθ,k+1


 =




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1







dk

θk

dd,k

dθ,k




and observation model is:

(
dk+1

θk+1

)
=

(
1 0 0 0
0 1 0 0

)



dk

θk

dd,k

dθ,k




As can be observed from the model specifications, we omit the correlation
between objects and separately execute filter equations for each object. If
an object is not observed for more than a pre-specified time step, the belief
state is reset and the object is reported as unknown. For our case this time
step is 270 frames for stationary objects and 90 frames for dynamic objects.

In the update steps, the odometry readings are used. The odometry
reading is u = {dx, dy, dθ} where dx and dy are displacements in egocentric
coordinate frame and dθ is the change in orientation. When an odometry
reading is received, all the state vectors of known objects are geometrically
re calculated and the uncertainty is increased.

The most clear effect of using a Kalman Filter is that the disadvantage
of limited field of view is reduced. In the Figure 4.2, a robot spins its head
and is aware of three distinct landmarks at the same time.

4.2 Localization

In the previous years in SPL, a simple goal box seeking action was enough
to score or even win matches. However, in recent years, the score intented
actions of the robot are highly dependent on self pose information. The

21

Figure 4.2: A robot spins its head and is aware of three distinct landmarks
at the same time.

problem of estimating the self pose has also become harder due to the de-
creased number of landmarks and increased field size.

The localization problem is a self pose estimation problem like in section
4.1, and the widely used approach is the Monte Carlo Localization (MCL)
algorithm [11]. In this problem, the state to be estimated is µ = {x, y, θ},
where x and y are global coordinates and θ is orientation of the robot.

In MCL algorithm, belief state is represented by a particle set and each
element represents a possible pose of the robot. In Figure 4.3, a sample
belief state is given.

In the MCL algorithm, an importance weight is calculated for each par-
ticle which shows how suitable a particle to the observations. All the parti-
cles are copied to the next belief state set with respect to their importance
weight. To calculate importance weights, the observations are taken from the
output of the world modeling algorithm as described in section 4.1. Only the
known stationary objects are used in calculations. The importance weights
is calculated by difference of expected bearing and predicted bearings and
likely if the distance is known, expected distance and predicted distance. In
Figure 4.4, an example belief state is given, where both distance and bearing
is known for a single landmark.

While importance weight and resampling steps are the correction step
of the MCL, prediction step is done with odometry readings. In prediction,
each particle is updated with geometrically recalculating the position and
adding a small random noise which represents increase in uncertainty. To
avoid kidnapping situations, in the resampling step, some of the particles
are randomly generated.sampling steps are the correction step of the MCL,
prediction step is done with odometry readings. In prediction, each particle
is updated with geometrically recalculating the position and adding a small

22

Figure 4.3: Belief state of the robot in MCL algorithm.

Figure 4.4: An example belief state is given, where both distance and bearing
is known for a single landmark. The particles are grouped over an arc around
true position of the object.

23

random noise which represents increase in uncertainty. To avoid kidnap-
ping situations, in the resampling step, some of the particles are randomly
generated.

When we need the best estimate of the pose, we take the mean of a
subset of particles with highest importance weights. In Figure 4.5, the best
estimate of the robot with belief state is given.

Figure 4.5: The best pose estimate is marked in red color.

24

Chapter 5

Motion

For our team, the most important component of transition from quadruped
robots to biped robots was the locomotion module. Fast and robust lo-
comotion is a vital capability that a mobile robot should have, especially
if the robot is expected to play soccer. Cerberus has a significant research
background in different mobility configurations including wheeled and legged
locomotion. The rest of this section provides information about our research
on bipedal locomotion.

5.1 Motion Engine

Our motion engine has three different representation infrastructures, which
allow different levels of abstractions.

The first infrastructure contains a data structure, named “Body”, which
stores the physical properties of the robot as well as the functions used for
performing related calculations. The “Body” is composed of several “Link”s,
which are data structures for storing the joint positions, angles, and related
kinematic description parameters. Being platform independent and generic,
this infrastructure makes it possible to define new robot platforms via some
configuration files and allows controlling the joints of the robot platform
easily.

The second infrastructure is a hierarchical one. A root engine is defined
at the very top level and the common properties and functions of each
different motion engine are included in it. Different motion engines are
inherited from the root engine, and platform and motion algorithm specific
parts are defined. For Nao, four main features are implemented. The first
one is to make the robot perform a static walking in which the robot tries to
keep the ground projection of its Center of Mass (CoM) inside the support
polygon. In addition to the static walking feature, a dynamic walking feature
is also implemented. A signal generation-based algorithm, which is very
similar to Central Pattern Generator [12] is used. The motion of the head

25

is separated from the motion of the rest of the body and implemented as
the third feature. The last feature is the motion player, which reads the
sequential joint angles from pose definition files and plays them to realize
some special actions, such as kicking the ball and standing up from a fallen
position.

The third infrastructure is a container for some common motion-related
functions. In addition to the matrix operations which are necessary for
kinematics calculations, implementations to read configuration files are also
included as common functions.

5.2 Implemented Biped Walking Algorithms

Walking algorithms can be classified into two main groups; static walking
and dynamic walking. The main principle of static walking is to preserve
stability all the time during the motion, which guarantees that the robot
will not fall unless there is an external force to push the robot to fall. The
most common method for static walking is based on keeping the CoM inside
the support polygon. Although static walking is advantageous in terms of
maintaining the balance continuously, the length of each step is very limited
because of the concerns related to keeping the CoM inside the support poly-
gon. Therefore, it is not possible to achieve a fast walk using static walking
techniques. On the other hand dynamic walking is based on maintaining
the balance by using dynamic properties of the motion. There are mainly
three different methodologies;

• Zero-Moment Point (ZMP) Criterion [13] is very similar to CoM
based static walking. The only difference is that holding ZMP inside
the support polygon is enough to maintain the balance. Although it
is a very common method, it is computationally very expensive.

• Passive-Dynamic Walking (PDW) [14] where CoM is carried along
the motion direction, and the body moves along the motion direction
because of the gravity. The important point is the timing of the foot
contact of the swinging leg with the ground.

• Central Pattern Generators (CPGs) [12] method is based on the syn-
chronous movement patterns of the joints. For this purpose, a signal
is assigned for each joint, and the system is trained for synchronous
patterns and balanced locomotion as a whole.

We implemented static walking with CoM criterion and a dynamic walk-
ing with CPG method [15] to be used on our Nao robots.

26

5.2.1 Static Walking with CoM Criterion

As a static walking example we implemented finite state machine based
biped walking whose main criterion is to keep the CoM inside the support
polygon. The implementation is essentially a combination of three different
motions. The first motion is to shift the CoM into the sole of the support
foot. This motion is generated on the sagittal plane and in the direction
of the motion in order to prevent CoM from being left behind or beyond.
By this way, it is provided that the ground projection of the CoM is kept
inside the sole of the support foot. Foot pressure sensors (FPSs) are used
for feedback. When it is guaranteed that the weight of the body is carried
by the support foot, swinging leg is shortened. During this motion, the
body is moved along the walking direction by the joints at the ankle of the
support foot until the ground projection of the CoM is on the boundaries
of the support foot. This makes it possible to use a longer step. As the last
motion, swinging leg is moved in the direction of motion and landed on the
ground. This point is where the robot is in its most unstable state. In order
to maintain the stability of the robot, the landing speed of the foot and
reactiveness to be aware of the landing moment of the swinging leg should
be controlled. If the landing is too fast, the landing will not be noticed
on time and the state transition would not be accomplished properly. This
disturbs the balance through the support leg and the robot falls down on
the support leg. On the other hand, if the landing is too slow, the motion
will be very slow and inefficient. For these purposes, forward kinematics is
used in addition to the FPSs. Using forward kinematics, relative locations
of the feet are calculated and swinging foot is landed fast enough while it
is horizontally far away from the support foot. When the vertical distance
between swinging foot and the ground is small, landing speed is slowed down
and FPSs are used to determine whether the swinging foot is landed or not.
Because of the symmetric nature of the biped walking, after the swinging leg
is landed, the roles are switched between legs and same motion is repeated
for the other leg.

5.2.2 Dynamic Walking with CPG Method

As a dynamic walking example, a walking method based on that of the
champion of the Humanoid League in the RoboCup07, NimbRo [15], is im-
plemented. They defined three important features for each leg; leg extension,
leg angle, and foot angle. Leg extension is the distance between hip joint
and ankle joint. It determines the height of the robot while moving. Leg
angle is the angle between the pelvis plate and the line from hip to ankle.
It has three components; roll, pitch, and yaw. The third feature, foot an-
gle, is defined as the angle between foot plate and pelvis plate. It has only
two components; roll and pitch. Using these features helps us to have more

27

abstract calculations for the motion.
Before finding motion features, a central clock (φtrunk) is generated for

the trunk which is between −π and π. Each leg is fed with a different clock
(φleg) with ls× π/2 phase shift where ls represents leg sign and it is −1 for
the left leg while +1 for the right leg. The synchronization of the legs can
be preserved in this way. In the calculations of motion features at a given
time, the corresponding phase value is considered and the values for features
are calculated by using these phase values.

In order to find the leg angle and foot angle features, motion at each
step is divided into five sub-motions; shifting, shortening, loading, swinging,
and balance. In shifting sub-motion, lateral shifting of the CoM is handled.
For this purpose, a sinusoidal signal is used:

θshift = ls× ashift × sin(φleg) (5.1)

where ashift is a constant to determine the shift amount. This shift signal is
applied to the leg and the foot with different magnitudes. While it is applied
to the leg as it is, only the half of the value with a negation is applied to
the foot:

θLegShift = θshift (5.2)

θFootShift = −0.5× θshift (5.3)

. The second important sub-motion is shortening signal and it is not always
applied. Phase value for shortening is calculated with

φshort = vshort × (φleg + π/2 + oshort) (5.4)

. where vshort is a constant to determine the shortening duration, and oshort

is also a constant for the phase shift of shortening relative to the shifting
sub-motion. During shortening state, both a joint angle for the foot and a
leg extension value are calculated by

γshort = { −ashort × 0.5× (cos(φshort) + 1) if − π ≤ φshort < π
0 otherwise

(5.5)

and

θfootShort = { 0.5× (cos(φshort) + 1) if − π ≤ φshort < π
0 otherwise

(5.6)

The third sub-motion of the step is loading which is also not always applied.
The function of the corresponding phase value is given as

φload = vload × piCut(φleg + π/2− π/vshort + oshort)− π (5.7)

28

. where vload is a constant to determine the load duration, and piCut is a
function which maps the value of the parameter to a value between −π and
π. In this phase, only a part of the leg extension is calculated as

γload = { −0.5× aload × cos(φload) + 1) if − π ≤ φload < π
0 otherwise

(5.8)

where aload is determined according to the motion speed. Swinging is the
most important part of the motion. In this part, the leg is unloaded, short-
ened and moved along the way of motion which reduces the stability of
the system considerably. This movement has effects on each component of
the leg and the foot angle features of the motion. Because the behavior of
the θswing is changed during the swinging process, another clock signal is
calculated as

φswing = vswing × φleg + π/2 + oswing (5.9)

. where vswing is a constant to determine the swinging duration, and oswing is
also a constant for a phase shift of swinging sub-motion. θswing is calculated
by the equation:

θswing = {
sin(φswing) if − π/2 ≤ φswing < π/2

b× (φswing − π/2 + 1) π/2 ≤ φswing

b× (φswing + π/2− 1) otherwise
(5.10)

where b = −(2/(2× π × vswing − π).
According to the speed and direction of the motion, θswing is distributed

to the components of leg and foot angle features as

θlegSwingr = ls× v0 × θswing (5.11)

.
θlegSwingp = v1 × θswing (5.12)

.
θlegSwingy = ls× v2 × θswing (5.13)

.
θfootSwingr = ls× 0.25× v0 × θswing (5.14)

.
θfootSwingp = 0.25× v1 × θswing (5.15)

.
As the last component of the step, balance, correction values for the

deviations of the other operations are added to the system from the foot
angle feature and the rolling component of the leg angle feature. Correction
equations are:

θfootBalancer = ls× 0.5×0 ×cos(φleg + 0.35) (5.16)

29

.

θfootBalancep = 0.02 + 0.08× v1 − 0.04× v1 × cos(2.0× φleg + 0.7); (5.17)

.
θlegBalancer = 0.01 + ls× v0 + |v0|+ 0.1× v2 (5.18)

. At the end, the corresponding parts of the motion features can be com-
bined. Equations to combine corresponding parts are given as

θlegr = θlegSwingr + θlegShift + θlegBalancer (5.19)

.
θlegp = θlegSwingp (5.20)

.
θlegy = θlegSwingy (5.21)

.
θfootr = θfootSwingr + θfootShift + θfootBalancer (5.22)

.
θfootp = θfootSwingp + θfootShort + θfootBalancep (5.23)

.
γ = γshort + γload (5.24)

. There is a direct relation between the joints of the robot and these motion
features. In other words, by using these features, the values for hip, knee,
and ankle joints can be calculated easily using the following rules:

1. Since there is only one feature which changes the distance between the
hip and ankle which is the leg extension, the knee joint is determined
according to only the value of the leg extension feature of the motion.
From five sub-motions of a step, the leg extension feature is calculated
and its value is in between −1 and 0. While calculating the value
of the knee joint from the extension, the normalized leg length, n, is
calculated as n = 1 + (1 − nmin) × γ, where nmin = 0.875. The knee
joint value is directly proportional to the arc cosine of the length of
the leg; θknee = −2× acos(n).

2. Another special case for the motion is its turn component. If we con-
sider the physical construction of the robot, there is only one joint
dedicated for this motion; hip yaw joint. So, the turn component of
the motion directly determines the value for the hip yaw joint which
means θhipy = θlegy .

30

3. There are two more joints at the hip. By definition, roll and pitch
components of the leg angle feature directly determine the values of
the hip joints. This means that θhipr = θlegr and θhipp = θlegp . In
order to compensate for the effects of the leg extension on the pitch
component of the leg angle feature, half of the value of the knee joint
angle should be rotated around the turn component of the motion and
added to the hip pitch and roll joints. In other words, pitch and roll
components of the hip joints can be calculated by

(
θhipr

θhipp

)
=

(
θlegr

θlegp

)
+ Rθhipy ×

(
0

−0.5× θknee

)
(5.25)

4. The values of the ankle joints are calculated by applying the inverse of
the rotation around the turn component of the motion to the difference
between the leg and the foot angle features. In order to compensate for
the effects of the leg extension on the pitch component of the foot angle
feature, half of the value of the knee joint angle should also be added
to the ankle pitch joint. In other words, pitch and roll components of
the ankle joints can be calculated by
(

θankler

θanklep

)
=

(
0

−0.5× θknee

)
+R−1

θhipy
×

(
θfootr − θlegr

θfootp − θlegp

)
(5.26)

The resulting signals of each joint of a leg are given in figures 5.1, 5.2,
5.3, 5.4, 5.5, 5.6 for forward walking direction.

Figure 5.1: Signal for controlling the hip yaw joint for forward walking.

Aside from the implementation inspired from the work of the NimbRo
team, we have also developed a custom algorithm for bipedal walking, which

31

Figure 5.2: Signal for controlling the hip pitch joint for forward walking.

Figure 5.3: Signal for controlling the hip roll joint for forward walking.

32

Figure 5.4: Signal for controlling the knee joint for forward walking.

Figure 5.5: Signal for controlling the ankle pitch joint for forward walking.

33

Figure 5.6: Signal for controlling the ankle roll joint for forward walking.

Figure 5.7: Robot swinging from one side to the other periodically by setting
a sinusoidal angle value to the hip roll joint.

is also a CPG-based method. In our design, the main walking motion starts
from the hip, specifically the roll joint, which makes the body to swing from
one side to the other. In order to keep the feet parallel to the ground while
swinging, the ankle roll joint angles should be set to the negative of the
value of the corresponding hip roll joint angle. The periodic movement of
the hip is obtained by using a sinusoidal signal to be supplied as the hip roll
joint angle. Figure 5.7 illustrates the robot swinging from one side to the
other periodically.

In order to realize this movement, the hip roll and ankle roll angles are
set according to the following equations.

θhiproll=Ahiproll
sin(period)

θankleroll=−Aankleroll
sin(period)

34

This motion is the basis of the entire walking since it passes the projection
of the center of mass from one foot to the other periodically, letting the idle
foot to move according to the requested motion command.

In order to make the robot perform a stepping motion, the pitch angles on
the leg chain should be set. These angles again take sinusoidal values which
are consistent with the hip roll angle. The following equations illustrate how
the values of these angles are computed.

θhippitch
= Apitchsin(period) + θhiprest

pitch

θkneepitch
= −2Apitchsin(period) + θkneerest

pitch

θanklepitch
= Apitchsin(period) + θanklerest

pitch

The Apitch value determines how big the step is going to be. Figure
5.8 shows the robot walking forwards. Obtaining backwards walk does not
require much work but just reversing the iteration of the period value, which
is defined as 0 < period < 2π.

Similarly, making the robot move laterally is possible by setting the roll
angles instead of the pitch angles together with the knee pitch, while turning
around is possible by setting the hipY awPitch joint angles properly. The
amplitudes Apitch, Aroll, Ayaw are multiplied with the corresponding motion
component, namely forward, left, turn which are normalized in the inter-
val [−1, 1], to manipulate the velocity of the motion. In order to make the
robot move omnidirectionally, the sinusoidal signals that are computed in-
dividually for each motion component are summed up and the final joint
angle values obtained in that way. For instance, it is possible to make the
robot walk diagonally in the north-west direction by simply assigning posi-
tive values to both the forward and the left components.

35

Figure 5.8: Robot walking forward by moving its leg joints in harmony with
each other.

36

Chapter 6

Planning and Behaviors

The soccer domain is a continuous environment, but the robots operate in
discrete time steps. At each time step, the environment, and the robots’
own states change. The planner keeps track of those changes, and makes
decisions about the new actions. Therefore, first of all, the main aim of the
planner should be sufficiently modeling the environment and updating its
status. Second, the planner should provide control inputs according to this
model.

We have developed a four layer planner model, that operates in discrete
time steps, but exhibits continuous behaviors, as shown in Figure 6.1

Figure 6.1: Multi-layer Planner.

37

The topmost layer provides a unified interface to the planner object.
The second layer deals with different roles that a robot can take. Each
role incorporates an “Actor” using the behaviors called “Actions” that the
third layer provides. Finally, the fourth layer contains basic skills that the
actions of the third layer are built upon. A set of well-known software design
concepts like Factory Design Pattern[16], Chain of Responsibility Design
Pattern [17] and Aspect Oriented Programming [18].

Figure 6.2: Flowchart for task assignment.

For coordination among the teammates and task allocation, we employ
a market driven task allocation scheme [19, 20]. In this method, the robots
calculate a cost value (their fitness) for each role. The calculated costs are
broadcasted through the team and based on a ranking scheme, the robots
chose the most appropriate role for their costs. Here, each team member
calculates costs for its assigned tasks, including the cost of moving, aligning
itself suitably for the task, and the cost of object avoidance, then looks
for another team member who can do this task for less cost by opening an
auction on that task. If one or more of the robots can do this task with
a lower cost, they are assigned to that task, so both the robots and the
team increase their profit. Other robots take actions according to their cost
functions (each takes the action that is most profitable for itself). Since all
robots share their costs, they know which task is appropriate for each one
so they do not need to tell others about their decisions and they do not need
a leader to assign tasks. If one fails, another would take the task and go on
working.

The approach is shown in the flowchart given in Figure 6.2. The robot
with the smallest score cost CES will be the primary attacker. Similarly

38

the robot, except the primary attacker, with the smallest Cdefender cost will
be the defender. If Cauctioneer is higher than all passing costs (Cbidder(i))
then the attacker will shoot, else, it will pass the ball to the robot with the
lowest Cbidder(i) value. The cost functions used in the implementations are
as follows:

CES = µ1.tdist + µ2.talign + µ3.cleargoal(6.1)
Cbidder(i) = µ1.tdist + µ2.talign + µ3.clearteammate(i) + CES(i), i 6= robotid(6.2)

Cauctioneer = CES(robotid)(6.3)
Cdefender = µ5.tdist + µ6.talign + µ7.cleardefense(6.4)

where robotid is the id of the robot, tdist is the time required to move for
specified distance, talign is the time required to align for specified amount, µi

are the weights of several parameters to emphasize their relative importance
in the total cost function, cleargoal is the clearance from the robot to goal
area-for object avoidance, cleardefense is the clearance from the robot to the
middle point on the line between the middle point of own goal and the ball-
for object avoidance, and similarly clearteammate(i) is the clearance from the
robot to the position of a teammate. Each robot should know its teammates
score and defense costs. In our study each agent broadcasts its score and
defense costs. Since the auctioneer knows the positions of its teammates, it
can calculate the Cbidder(id=robotid) value for its teammates.

The game strategy can easily be changed by changing the cost functions
in order to define the relative importance of defensive behavior over offensive
behavior, and this yields greater flexibility in planning, which is not generally
possible.

39

Acknowledgements

This work is supported by Boğaziçi University Research Fund through
project 06HA102 and TUBITAK Project 106E172.

40

Bibliography

[1] Robocup. www.robocup.org/.

[2] SPL. Robocup standard platform league www.tzi.de/spl/.

[3] Aldebaran-Nao. http://www.aldebaran-robotics.com/eng/nao.php.

[4] Trolltech’s Qt Development Framework.
http://trolltech.com/products.

[5] Ethem Alpaydın. Machine Learning. MIT Press, 2004.

[6] Thomas Lemaire, Cyrille Berger, Il-Kyun Jung, and Simon Lacroix.
Vision-based slam: Stereo and monocular approaches. Int. J. Comput.
Vision, 74(3):343–364, 2007.

[7] H. Köse, B. Çelik, and H. L. Akın. Comparison of localization methods
for a robot soccer team. International Journal of Advanced Robotic
Systems, 3(4):295–302, 2006.

[8] K. Kaplan, B. Çelik, T. Meriçli, Ç. Mericli, and H. L. Akın. Practical
extensions to vision-based monte carlo localization methods for robot
soccer domain. RoboCup 2005: Robot Soccer World Cup IX, LNCS,
4020:420–427, 2006.

[9] H. Köse and H. L. Akın. The reverse monte carlo localization algorithm.
Robotics and Autonomous Systems, 55(6):480–489, 2007.

[10] Greg Welch and Gary Bishop. An introduction to the kalman filter.
Technical report, Chapel Hill, NC, USA, 1995.

[11] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert.
Robust monte carlo localization for mobile robots. Artificial Intelli-
gence, 128(1-2):99–141, 2001.

[12] C. Pinto and M. Golubitsky. Central pattern generators for bipedal
locomotion. J Math Biol, 2006.

[13] M. Vukobratovic and D. Juricic. Contribution to the synthesis of biped
gait. IEEE Transactions on Bio-Medical Engineering, 1969.

41

[14] Tad McGeer. Passive dynamic walking. The International Journal of
Robotics Research, 9:62–82, April 1990.

[15] Sven Behnke. Online trajectory generation for omnidirectional biped
walking. 2006.

[16] Wikipedia Anonymous. Factory method pattern, 2007.

[17] Wikipedia Anonymous. Chain-of-responsibility pattern, 2007.

[18] Wikipedia Anonymous. Aspect-oriented programming, 2007.

[19] H. Köse, Ç. Meriçli, K. Kaplan, and H. L. Akın. All bids for one and one
does for all: Market-driven multi-agent collaboration in robot soccer
domain. Computer and Information Sciences-ISCIS 2003, 18th Inter-
national Symposium Antalya, Turkey, Proceedings LNCS 2869, pages
529–536, 2003.

[20] H. Köse, K. Kaplan, Ç. Meriçli, U. Tatlıdede, and H. L. Akın. Market-
driven multi-agent collaboration in robot soccer domain. Cutting Edge
Robotics, pages 407–416, 2005.

42

