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1 Introduction

“Cerberus” team made its debut in the 4-Legged league in RoboCup 2001 competition.
This was the first international team participating in the league as a result of the joint
research effort of Boğaziçi University (BU), Istanbul, Turkey and Technical University
Sofia, Plovdiv branch (TUSP), Plovdiv, Bulgaria [1]. The team competed in Robocup
since then, except Robocup 2004. Since 2004, Boğaziçi University is maintaining the
team. In 2005, despite the fact that it was the only team competing with ERS-210s (not
ERS210As), Cerberus won the first place in the technical challenges. In 2006, we have
carried out our success with old ERS-210s to the more powerful ERS-7s by reaching
the quarter finals. We lost only three games to the eventual first, third, and fourth place
teams.

Boğaziçi University has a strong research group in AI. The introduction of Robocup
as a unifying theme for different areas of study in autonomous robots has attracted
many talented students and accelerated research efforts with more than 30 journal and
conference papers. Currently, the department has teams both in Robocup four legged
and rescue simulation leagues. Together with the introduction of the new humanoid
robot Nao [2] as the new standard platform as a replacement for Aibo, the team now has
a new challenge to make the robots play soccer in a more “humanlike” manner and the
opportunity to test the methods developed for bipedal walking and control against other
teams. We will be collaborating with Işık University. The variety of robotic platforms
that the team has worked on so far also brought the necessity to develop a platform-
independent robotics library [3], details of which will be provided in this document.

The rest of the document provides information about research done by our team
in various fields of AI and robotics which we intend to apply to the new platform for
playing soccer such as, vision, localization, locomotion, and planning and coordina-
tion/cooperation.

2 Software Architecture

We intend to use a modular approach which is based on the one that has been success-
fully applied on the Aibo platform. The modules that make up the architecture are:



– Vision
– Localization
– Locomotion
– Planning

In addition to the software running on the robots, we have already developed a so-
phisticated off line software called Cerberus Station which enables us to debug and test
our algorithms, and helps us with labeling the images and several calibration operations.
We will extend this platform to be used with Nao. We expect this process to be rather
straightforward.

3 Vision

The vision module is responsible for information extraction from received camera frames.
The process starts with receiving a camera frame and produces an egocentric world
model consisting of a collection of visual percepts as shown in Figure 1.

Fig. 1. Phases of image processing. a) Original image, b) Color classified image, c) Found blobs,
d) Perceived objects e) Egocentric view.

Since the important objects on the field are color coded, the first step to take is to
recognize these colors and detect corresponding objects (i.e. goals, beacons, and the
ball). We use Generalized Regression Neural Network (GRNN) [4] for color gener-
alization. In the ERS-7 case it was extended to cope with the radial distortion in the
camera. If Nao’s camera has similar distortions, these can be easily handled in a similar
manner.



Fig. 2. The color classification. (a) and (d) Original Images, (b) and (e) Radius levels, (c) and (e)
Classified images.

The first step in the training process is to collect a set of images from the robot’s
camera and hand label them with proper colors. Then, a GRNN is trained on the la-
beled data but instead of using only the Y, U, V triplet, an extra dimension indicating
the euclidean distance of that pixel to the center of the image is also used. After the
training phase, the network is simulated for the input space to generate a color lookup
table for four bits (16 levels) of Y , six bits (64 levels) of U , six bits of V and three bits
(eight levels) of the radius. The resulting color lookup table is very robust to luminance
changes and it allows our vision system to work without using any kind of extra lights
other than the standard ceiling fluorescents. With the introduction of distance compo-
nent, the negative effect of the radial distortion is drastically reduced. According to our
measurements, we can play reasonably at an illumination level of 150-200 lux. We ex-
pect our low level vision to perform better on Nao due to its relatively higher image
quality than Aibos and allow us to play in natural lighting. The phases and result of our
color classification method is shown in Figure 2 for an actual ERS-7 image.

After color classification is performed, the image is processed for obtaining blobs.
We use an optimized region growing algorithm that performs both connected compo-
nent finding and region building operations at the same time. This algorithm works
nearly two times faster than the well known RLE-Find connected components-build
regions approach.

Line perception is also an important part of the vision module, since it provides
important information for the localization module. This component will be much more
important with the removal of the beacons entirely in 2008. We use a Hough Transform
based line perception algorithm. The sample images from line perception process are
shown in Figure 3.

For detecting the goals that were started to be used in 2007, we use a scan-line
based method with some improvements in the computational complexity of the process.
Figure 4 shows a very challenging situation where the goal is almost completely covered



Fig. 3. Phases of Line Detection. a) Original image, b) Color classified image, c) Perceived lines
e) Egocentric view.



with three robots; however, our goal detection approach is successful in detecting the
goal even in such extreme cases.

Fig. 4. Perception of the new goal on a highly occupied scene.

3.1 World Modeling

In our four legged robot team, each robot has an egocentric world model, which makes
Markovian estimates about the robot’s environment. The vision module provides instant
and noisy data. However, we need smoother pose information and knowledge about our
past perceptions in higher levels of planning. This is a state estimation problem and
there are many applications in the literature for linear or non-linear models with differ-
ent assumptions like Gaussian or distribution-free uncertainty approximation methods.
In previous years Cerberus team used MyEnvironment [5] for this purpose. MyEnvi-
ronment keeps a window over the past observations and estimates the state by using
statistics over the history. Starting from 2007, we switched to Kalman Filtering (KF)
and Extended Kalman Filtering (EKF) methods [6] for tracking the objects around the
robot.

First of all, we grouped objects in the environment as static and dynamic objects.
For static objects, (beacons, goals, goal-bars, etc.) we used only KF, and for dynamic
objects we used both KF and EKF. For static objects, our observation is z = {d, θ}
where d and θ are distance and orientation which define polar coordinates of the object
in egocentric coordinate frame. The state we are expecting is in the same format with
our observation, which is m = {d, θ}. The state transition model is linear and the states
evolve according to the equations m1

k+1 = Imk and zk = Imk. For the dynamic
objects, we want to estimate velocity components in vertical and horizontal axis in
egocentric origin as well as their locations. While the observation vector is the same as
static objects, the state vector is m = {x, y, dx, dy}, where x and y are coordinates, and
dx and dy are velocity components. To estimate the state, an EKF is set up and used



with the following observation model.

d =
√

x2 + y2

θ = arctan (y/x)
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The reason behind using two filters on the dynamic objects is that it is difficult to

adjust the parameters of a single filter for estimating both the location and the velocity of
the object at the same time. Therefore, we utilized one filter for estimating the location
and the other filter for estimating the velocity.

The pose of the robot, the position, direction, and velocity of the ball, and the dis-
tance and orientation of the opponent goal are estimated through this egocentric world
model. In our implementation of the market algorithm, which will be explained in Sec-
tion 6, the robots share their egocentric world models through networking. Each robot
fuses its own world model and the world models coming from its teammates, and forms
a shared world model. The auction mechanism is executed by every robot using the
information in the shared world model. Each robot calculates the costs for all robots for
all tasks and runs the auctions. Since the shared world models are the same in all robots,
they all make the same conclusion about the roles. This method is also safe compared
to the one which involves a single auctioneer, from the point of view of single point
failures.

4 Localization

Localization is one of our major research areas. Cerberus employs three different lo-
calization engines. The first engine is an in house developed localization module called
Simple Localization (S-Loc) [7]. S-Loc is based on triangulation of the landmarks seen.
Since it is unlikely to see more than two landmarks at a time in the current setup of the
field, S-Loc keeps a history of the percepts seen and modifies the history according to
the received odometry feedback. The perception update of S-Loc depends on the per-
ception of landmarks and the previous pose estimate. Even if the initial pose estimate
is incorrect, S-Loc acts as if the robot is kidnapped and it converges to the actual pose
in a short period of time if the robot perceives enough number of landmarks during this
period.

The second one is a vision-based Monte Carlo Localization with a set of practi-
cal extensions (X-MCL) [8]. The first extension to compensate for the errors in sensor
readings is using inter-percept distance as a similarity measure in addition to the dis-
tances and orientations of individual percepts (static objects with known world frame
coordinates on the field). Another extension is to use the number of perceived objects to
adjust confidences of particles. The calculated confidence is reduced when the number



of perceived objects is small and increased when the number of percepts is high. Since
the overall confidence of a particle is calculated as the multiplication of likelihoods
of individual perceptions, this adjustment prevents a particle from being assigned a
smaller confidence value calculated from a cascade of highly confident perceptions in
which case a single perception with lower confidence would have a higher confidence
value. The third extension is related to the resampling phase. The number of particles
in successor sample set is determined proportional to the last calculated confidence of
the estimated pose. Finally, the size of the window in which the particles are spread is
inversely proportional to the confidence of estimated pose.

The third engine is a novel contribution of our lab to the literature, called the Reverse
Monte Carlo Localization (R-MCL) [9]. R-MCL is a self-localization method for global
localization of autonomous mobile agents in the robotic soccer domain, which proposes
a new approach to overcome the uncertainty in the sensors, environment, and the motion
model. It is a hybrid method based on both Markov Localization (ML) and Monte Carlo
Localization (MCL) where the ML module finds the region in which the robot should
be and MCL predicts the geometrical location with high precision by selecting samples
in this region (Figure 5). The method is very robust, and requires less computational
power and memory compared to similar approaches, and it is accurate enough for high
level decision making which is vital for robot soccer.

Fig. 5. R-MCL Working Schema.

5 Locomotion

The most important component of transition to the biped robotic platform will be the
locomotion module. Fast and robust locomotion is a vital capability that a mobile robot
should have, especially if the robot is expected to play soccer. Cerberus has a significant
research background in different mobility configurations including wheeled and legged



locomotion. Since the leagues Cerberus currently competes in require legged locomo-
tion, the rest of this section will provide some information about our research in this
field and the proposed extensions to biped locomotion.

5.1 Quadrupedal Walking

Almost all teams developed a different type of walk in the 4-legged league of RoboCup.
The first parametric walking routine developed by rUNSWift 4-legged soccer team of
UNSW [10] called ParaWalk has become the basis of most of the walking engines used
in the league since it provides omnidirectional movement capability. In ParaWalk, the
paws of the robot follow predefined loci and inverse kinematics is used to calculate the
joint angles.

In 2005, we developed a rapid and stable parametric quadruped locomotion engine
for Sony Aibo ERS-210 robots [11, 12]. The parameters of this engine are the number
of intermediate points on the loci, the shape of the loci, and initial locations of the
paws relative to the shoulder joint of each leg. The shape of the loci is a hermite curve
approximated with an ellipse cut from below in some proportion. Optimization of these
parameters is crucial in order to have a fast and stable locomotion; therefore, Genetic
Algorithms (GA) is used as the optimization technique [12] in order to come up with
the best parameter set. After some fine-tuning, the robots reached a forward walking
speed of 310mm/s, which was the fastest walk achieved on ERS-210.

In 2006, we modified our motion engine for Aibo ERS-7 robots according to the
hardware specifications, and the object-oriented design of our engine made this process
easy and fast. The second step was to optimize the parameters of the engine for the di-
mensions of the new robot. First, we used GA for parameter optimization on the Webots
simulator [13,14]. Then, we tried Evolutionary Strategies (ES) for optimization because
of its advantage over GA in its ability to solve continuous parameter optimization prob-
lems [15, 16]. We implemented ES initially on the simulator as well in order to be able
to make a deep search in the parameter space. After the convergence of the algorithm
on the simulator, we implemented ES on the real robot to fine-tune the parameters for
the carpet of the field [16].

5.2 Bipedal Walking

There has been a significant amount of research done on bipedal/humanlike walking.
Most of the approaches are built on top of the Zero Moment Point (ZMP) concept [17]
to control the stability of the robot. As opposed to the quadruped case, the robot is
no longer in balance by default. In order to keep the robot upright and balanced, the
trajectory that each foot follows changes over time; hence, the motion pattern must
be generated in real-time. Angular momentum equation is used to guarantee that the
generated trajectories are suitable for the dynamic stability. Dynamic stability of the
robot can be measured by the distance of the ZMP to the boundaries of a predefined
stability region.

Another algorithm that recently became popular is Passive Dynamic Walking (PDW)
[18]. This algorithm tries to solve the problem in a totally different way. In PDW, pas-
sive fall is used as the main action during walking. While ZMP-based approaches try to



keep balance continuously, PDW approach can be thought as continuous passive fall.
The most important property of PDW is that the robot does not try to keep its balance.
Balance is preserved only by changing the foot contact with the ground on time. In or-
der to find the correct timing, this action can be examined as a cyclic motion. Using this
approach, a more natural and efficient walking behavior can be obtained [19].

Our team started doing research on bipedal walking at the beginning of 2007. As
in all the other robotic platforms that we have worked on so far, our goal with our hu-
manoid robots has been to develop a platform-independent software architecture that
will work both in the simulation environment and on the real robot. We started devel-
oping our algorithms on the simulator including a parametric bipedal walking engine;
therefore, once we receive Nao, it will be relatively easy for us to run the codes on the
robot after fine-tuning the parameters that we obtained on the simulator.

6 Planning and Cooperation

Planning is also a major research area of the Cerberus team. The soccer domain is a
continuous environment, but the robots operate in discrete time steps. At each time step,
the environment and the robots’ own states change. The planner keeps track of those
changes, and makes decisions about the new actions. Therefore, first of all, the main aim
of the planner should be to model the environment appropriately and to update its status
accordingly. Second, the planner should provide control inputs based on to this model.
In robot soccer, the players should make both individual plans (single-agent planning)
and plans as a team (multi-agent planning). The rest of this section provides the details
of our approach to these two types of planning.

6.1 Single-Agent Planning

In the ERS-7 we used hand coded Finite State Automata based planners which gen-
erate the necessary behaviors [3]. We intend to do research on several approaches for
generating planners in an autonomous fashion.

– POMDP Based Approach: Recently we extended POMDP algorithms to continu-
ous domains [20] where we combine ART-2A [21], Kalman Filter, and Q-learning
[22]. We used this approach to generate behaviors like approach ball (see Figure 6)
and kick the ball towards the goal [23]. We will use this approach to generate more
complex behaviors to be used by the planners.

– Learning Based Approaches: The robots learn both individual skills and collabora-
tion, which emerge from very primitive behaviors. The action space is designed in
such a way to obtain more complex behaviors by combining simple actions, similar
to the subsumption architecture [24]. The simple actions include
• going towards the opponent goal,
• going towards the own goal,
• going towards the ball and a specific target,



Fig. 6. The trajectory generated by ARKAQ algorithm.

– Planning Based Approaches: Due to lack of computational power and the slow
nature of early classical AI planning algorithms, currently planning is not widely
used in RoboCup. As a non-deterministic and partially observable system, earlier
planners were not efficient or capable of presenting satisfactory results. We decided
to asses the feasibily tof using such planners in real-time and developed a Fast
Forward planner based approach [25] where the state was fully observable. It has
recently been shown [26] that such planners can be extended to partially observable
domains. The aim of this approach is to use latest planning algorithms in a non-
deterministic and partially observable system such as RoboCup.

6.2 Multi-Agent Planning

Soccer is a team game, hence the decision of an individual soccer player is affected
by all its teammates’ decisions. This makes multi-agent planning an important research
field for robotic soccer. We have been working on this problem by pursuing several
different approaches.

– Metric Definition and Validation: Regardless of the planning algorithm to be used,
one needs to have some quantitatively measured and informative metrics. We devel-
oped a set of novel metrics based on the positions of players and the ball over time
and a novel statistical validation technique for testing whether a proposed metric is
informative or not [27].

– Market Based Approach: We are using a market-driven multi-agent collaboration
algorithm [28] for dynamic role assignment of the players. Once assigned, the agent
starts making decisions according to its role until its role changes.



The market-driven method for multi-agent coordination [29] employs the proper-
ties of free markets, in which every individual tries to maximize its own profit,
hence maximizing the system’s total profit. The idea of market-driven method for
multi-agent teams is based on the interactions between the agents in a distributed
fashion for trading work, power, and information. The overall goal of the system is
decomposed into smaller tasks and an auction is performed for each of these tasks.
In each auction, the participant agents calculate their estimated cost for accomplish-
ing that task and offer a price to the auctioneer. At the end of the auction, the bidder
with the lowest offered price is given the right to execute the task and receives its
revenue on behalf of the auctioneer. In order to implement this strategy, a revenue
and a cost function must be defined. Then, the net profit can be calculated based on
the difference between the values of the revenue and the cost functions.
We proposed this method for multi-robot collaboration in robot soccer domain [28,
30, 31]. We defined attacker, defender, and midfielder roles as tasks and we run an
auction mechanism for each task. The robots calculate their costs for the tasks and
participate in auctions. As an example, the cost function of being the attacker is
calculated using the distance between agent and ball, distance between agent and
goal, and clearance to the goal. The auctioning is done with the help of our shared
world model structure.

– DEC-POMDP Approach: Partially Observable Markov Decision Process (POMDP)
approach can model environments where the state is not fully observable and state
transitions are probabilistic. Many studies have been made on this area in the last
30 years. POMDP models the environment from the point of view of a single agent.
Decentralized POMDP (DEC-POMDP) which is an extended version of POMDP
where there are multiple agents in the environment, is such an effort. We know that
POMDP models usually give good results and they are applicable to real world situ-
ations. Therefore, DEC-POMDP is expected to be a good model for the multi-agent
case. However, it has recently been shown that solving DEC-POMDP problems is
NEXP-complete, while solving POMDP is PSPACE-complete [32]. Therefore, try-
ing to obtain exact solutions for DEC-POMDP problems is not realistic. So, it is
better to concentrate on finding near optimal approximate solutions. We have de-
veloped ES-based approximate solution approach for this purpose [33]. We are
currently extending this to continuous states which will enable us to use them in
realistic robotic applications like robot soccer.

7 Conclusion

Cerberus has been a very active team in the 4-legged league which is demonstrated
both by the results and the quality as well as the quantity of publications which are the
outcome of the research efforts. As demonstrated in this document the team is ready
for the new standard league to apply its past theoretical and practical experience and to
advance the state of the art in the fields of AI and robotics towards meeting the Robocup
2050 Challenge.
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7. B. Çelik Köse, H. and H. L. Akın. Comparison of localization methods for a robot soccer
team. International Journal of Advanced Robotic Systems, 3(4):295–302, 2006.
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