Cerberus’05 Team Description Paper

H. Levent Akin', Hatice Kose!, Cetin Mericli', Kemal Kaplan®, Buluc Celik!
and Tekin Mericli?

'Bogazici University
Department of Computer Engineering
34342 Bebek, fstanbul, TURKEY
{akin, kose, cetin.mericli, kaplanke, buluc.celik}@boun.edu.tr

?Marmara University
Department of Computer Engineering
Géztepe, Istanbul, TURKEY
tmericli@eng.marmara.edu.tr

1 Introduction

The ”Cerberus” team made its debut in RoboCup 2001 competition. This was
the first international team participating in the league as result of the joint re-
search effort of a group of students and their professors from Bogazici University
(BU), Istanbul, Turkey and Technical University Sofia, Plovdiv branch (TUSP),
Plovdiv, Bulgaria. The team competed in Robocup 2002 and Robocup 2003.
Currently Bogazici University is maintaining the team and it is the only team
participating from East Europe.

Bogazici University has a strong research group in AI. The introduction of
Robocup as a unifying theme for different areas of study in autonomous robots
has attracted many talented students and has accelerated research efforts with
many publications. Currently, the department has teams both in Robocup Sony
four legged and rescue simulation leagues and in FIRA Mirosot leagues.

2 The Proposed Approach

The entire software system of Cerberus was designed and developed from the
scratch for this year. As opposed to the previous years, we began with developing
a framework which makes all of our modules platform and hardware independent
and allows us to transfer from or to the robot any input, output or intermediate
data of the modules. This infrastructure brought us a considerable speedup dur-
ing development and testing. The first goal of our team is to develop a platform
where we can combine research and development techniques with software en-
gineering methodologies. After careful inspection of previous works of our team
and other teams, we decided to divide the project into two main parts.

— Cerberus Station
— Cerberus Player



2.1 Cerberus Station

This is the offline development platform where we develop and test our algo-
rithms and ideas. The record and replay facilities allow us to test our imple-
mentations without deploying the code on the robot each time. It is developed
using Microsoft .NET technologies and contains a set of monitors which enable
visualizing several phases of image processing, localization, and locomotion in-
formation. It is possible to record live images, classified images, found regions,
perceived objects and estimated pose on the field in real time to a log file and
replay it in different speeds or frame by frame. Cerberus Station also contains
a locomotion test unit in which all parameters of the motion engine and special
actions can be specified and tested remotely. For debugging purposes, a telnet
client and an exception monitor log parser are also included in station. Since
each sub-module of the robot code is hardware independent, all modules can be
tested and debugged in station. This hardware and platform independence pro-
vides great save on development time when combined with advanced raw data
logging and playback system. Cerberus Station communicates with the robot
via TCP and uses a common serializable message structure for information ex-
change.

2.2 Cerberus Player

Cerberus Player is the part of the project that runs on the robots. Most of
the classes in Cerberus Player are implemented in a platform independent man-
ner, which means we can cross-compile them in various operating systems like
OPEN-R, Windows or Linux. Although, robot dependent parts of the code are
planned to run only on the robot, a simulation system for simulating locomotion
and sensing is under development. The software architecture of Cerberus Player
consists of four objects:

— Core Object
— Locomotion

Communication
Dock Object

Core Object The main part of the player code is the Core Object. This object
coordinates the communication and synchronization between the other objects.
All other objects are connected to this object. Core object takes camera image
as its main input and sends corresponding actuator commands to the locomotion
engine. Core Object is the container and hardware interface of Vision, Localiza-
tion and Planner modules. This combination is chosen because of the execution
sequence of these modules. All of them are executed for each received camera
frame and there is an input-output dependency and execution sequence vision
— localization — planner.



Communication Object Communication object is responsible for receiving
game data from the game controller and for managing robot-robot communica-
tion. Since the TCPGateway object which was the only communication interface
allowed so far will no longer be supported, both the game controller and robot-
robot communication infrastructure have been rewritten. They both use UDP
as the communication protocol.

Dock Object Dock object is the object which manages the communication
between a robot and the Cerberus Station. It redirects the received messages
to Core Object and sends the debug messages to the station. Dock object uses
TCP to send and receive serialized messages to and from Cerberus Station.

2.3 Modules in Cerberus

Core modules in Cerberus are vision, localization, planner and locomotion and
due to our development policy, all of them are platform-independent so they
can be adapted to any platform supporting standard C++ easily by writing a
wrapper class for interfacing.

fi
P,g? ¥ "\“'
e ¥
®)
Ir":l %
b4
(© @ (e

Fig. 1. Phases of image processing. a) Original image, b) Color classified image, c)
Found blobs, d) Percepted objects e) Egocentric view

Vision Module Vision module is responsible for information extraction from
received camera frame. The vision process starts with receiving a camera frame
and ends with an egocentric world model consisting of a collection of visual



percepts as shown in Fig. 1. Vision module is written from the very scratch this
year and several novel approaches for image processing have been introduced.

Color Classification: First, we have decided not to use previously im-
plemeted color classification methods like decision trees and nearest neighbor
[1]. Instead, we have implemented a Generalized Regression Network (GRNN)
[2] for color generalization. After labeling a set of images with proper colors, a
GRNN is trained with the labeled data and after the training phase, the network
is simulated for the input space to generate a color lookup table for four bits
(16 levels) of Y, six bits (64 levels) of U and six bits of V. The resultant color
lookup table is very robust to luminance changes and allows our vision system
to work without using any kind of extra lights other than the standard ceiling
fluorescents.

Object detection: The classified image is processed for obtaining blobs.
We use a new approach. Instead of using run length encoding (RLE), we use an
optimized region growing algorithm that performs both connected component
finding and region building operations at the same time. This algorithm works
nearly two times faster than the well known RLE-Find connected components-
build regions approach. Another novel approach used is the concept of a bounding
octagon of a region. Since the robot must turn its head in order to expand its
field of view, it is necessary to rotate the obtained image according to the actual
position of the head. However, since rotation is a very expensive operation, it is
not wise to rotate the entire image. For this reason typically only the identified
regions are rotated. Since octagons are more appropriate for rotation than boxes,
using octagons instead of boxes to represent regions reduces the information loss
due to rotation.

Our vision module employs a very efficient partial circle fit algorithm for
detecting partially occluded balls and the balls which are on the borders of the
image. Since accuracy in estimation of ball distance and orientation is needed
mostly in cases when the ball is very close and it is so often that the ball can
only be seen partially in such cases, having a cheap and accurate ball perception
algorithm is a must.

Line perception process is an important part of the vision module, since it
provides important information for the localization module. The sample images
from line perception process are shown in Fig. 2. The proposed approach is the
following:

— Hough transform is applied on the white pixels which are close enough to
green pixels using Robert’s Cross on their Y band as the first operation.

— Two thresholds are used to check each entry in the table prepared in Hough
transform. First threshold is minimum acceptable value for the line’s entry,
whereas the second one is minimum acceptable value for the sum of entries
of the line and its neighbors. For a line entry to be accepted, it should be a
local maximum as well.

— For a chosen line, to decrease the quantization error, the weighted average of
its angle and perpendicular distance are taken, where weights are the values
in the Hough transform table.



— Now, we have a more or less fine tuned line, but it is still the border of
the field line. Especially in images where field lines are close to the camera,
the lines occupy a thick region. The selected line is shifted along its normal
vector orientation. The amount and the direction of the shift are calculated
by following the normal line at different intervals.

— The lines are rotated according to the pan and the tilt of the camera.

— Then, the lines are mapped to the real 3D field using geometrical transfor-
mations.

— Once the lines are mapped to the field, they are with respect to the cam-
era. As they need to be with respect to the chest, they are transformed
accordingly.

— Finally, extra copies of the same line, which is a rare but possible situation,
are eliminated.

(@) (b)

(c) @

Fig. 2. Phases of Line Detection. a) Original image, b) Color classified image, c) Per-
ceived lines e) Egocentric view

The vision module is one of the fastest vision systems having the features
described above developed on AIBOs. On our current robots (ERS-210 with 200
MHz processor) a frame is processed in approximately 50 ms which provides a
20 frames per second speed.



Localization The localization method used by Cerberus team is the Reverse
Monte Carlo Localization (R-MCL) method. This is a self-localization method
for global localization of autonomous mobile agents in the robotic soccer domain,
which proposes to overcome the uncertainty in the sensors, environment and the
motion model [3], [4], [5]. This is a hybrid method based on both Markov Local-
ization (ML) and Monte Carlo Localization (MCL) where the ML module finds
the region where the robot should be and MCL predicts the geometrical location
with high precision by selecting samples in this region (Fig. 3). The method is
very robust and requires less computational power and memory compared to
similar approaches and is accurate enough for high level decision making which
is vital for robot soccer.

R-MCL
3D OR 2D CONTROLLER
GRID WORLD

RE-INITIALIZE
SAMPLE SIZE

RE-INITIALIZE
SAMPLE SET

VISUAL DATA
X, Y, ANGLE,
BELIEF
ODOMETRIC SAMPLING —
DATA

Fig. 3. R-MCL Working Schema

This year, we have also developed a standard vision based Monte Carlo Lo-
calization for comparing our localization system. During the development of this
localization system, a few extensions have emerged. Briefly, our new approach
proposes a set of practical extensions to the vision-based Monte Carlo localiza-
tion for RoboCup Sony AIBO legged robot soccer domain. The main disadvan-
tage of AIBO robots is that they have a narrow field of view so the number of
landmarks seen in one frame is usually not sufficient for geometric calculation.
MCL methods have been shown to be accurate and robust in legged robot soccer
domain but there are some practical issues that should be handled in order to
maintain stability/elasticity ratio in a reasonable level. In other words, the fast
convergence ability is required in case of kidnapping. But on the other hand, fast
convergence can be vulnerable when an occasional bad sensor reading is received.
The first extension to overcome these problems and compensate for the errors in
sensor readings is using inter-percept distance as a similarity measure in addition
to distances and orientations of individual percepts (Static objects with known
world frame coordinates on the field). Another extension is to use number of



perceived objects to adjust confidences of particles. The calculated confidence is
reduced when the number of perceived objects is small and increased when the
number of percepts is high. Since overall confidence of a particle is calculated as
the multiplication of likelihoods of individual perceptions, this adjustment pre-
vents a particle from being assigned with a smaller confidence value calculated
from a cascade of highly confident perceptions where a single perception with
lower confidence would have a higher confidence value. The third extension is
related with the resampling phase. The number of particles in successor sample
set is determined proportional to the last calculated confidence of the estimated
pose. Finally, the window size in which the particles are spread into is inversely
proportional to the confidence of estimated pose [6].

Planner and Behaviors We have used finite state machines (FSM) in our
planner module in the past years. However, since the soccer domain is a contin-
uous environment and the sensory input, which determines the state transitions,
is quite noisy, discrete planners like FSM suffers from oscillations and quantiza-
tion errors. Therefore, we adopted a modified version of Potential Field Planner
(PFP) previously used for wheeled mobile agents in our lab [7]. Potential Fields
is a method of planning robot trajectories based on combining the vector fields
induced by mapped objects, such as repulsive fields from obstacles and attrac-
tive fields from goals. In the implementations of potential fields for robot control,
only the force vector for the current robot position is calculated for each object
or schema. The sum of these vectors is then used to control the instantaneous
motion of the robot. The process is then repeated from the next robot position
to handle any new perceptual information that may have become available.

AWAY

Fig. 4. Ball Field

Most of the objects on the field only require an impulsive force for preventing
collision. Nevertheless, we use an attractive force to move a robot to a specific
location. On the other hand, the attractive simple fields use a constant force
directed to the center of the field. The field generated by the ball is combination
of two potential fields. The first one is a simple attractive field. The second
one is a special circular field located above and below the line between the ball
and the center of opponent goal as shown in Fig.4. The direction of the field



is perpendicular to the line segment between the robot and the center of the
nearest circle. On the other hand, the magnitude of the simple attractive field
is constant.

Broadcast Position Calculate Attack . |Calculate Defense
and Cost Data Cost Amay "] Cost Array

A

Yes Cheapest Yes—m Shoot

No

SD

AN Market Algorithm uses Cost values to
dynamically assign roles to players

ole Assigne
According fo Co:
Value

Fig. 5. Flowchart for task assignment

Although PFP approach provides a fast reactive controller for a single agent,
soccer is a cooperative game and the robots should cooperate and collaborate
with the teammates. For this purpose, we employ a market driven task allocation
scheme [10], [8], [9]. In this method, the robots calculate a cost value (their
fitness) for each role. The calculated costs are broadcasted through the team and
based on a ranking scheme, robots chose most appropriate role for their costs.
Here, each team member calculates costs for its assigned tasks, including the cost
of moving, aligning itself suitably for the task, and cost of object avoidance, then
looks for another team member who can do this task for less cost by opening an
auction on that task. If one or more of the robots can do this task with a lower
cost, they are assigned to that task, so both the robots and the team increase
their profit. Other robots take actions according to their cost functions (each
takes the action which is most profitable for itself). Since all robots share their
costs, they know which task is appropriate for each one so they do not need to
tell others about their decisions and they do not need a leader to assign tasks.
If one fails, another would take the task and go on working.

The approach is shown in the flowchart given in Fig. 5. The robot with the
smallest score cost Cgg will be the primary attacker. Similarly the robot, except
the primary attacker, with the smallest Cyefender cost will be the defender. If
Cauctioneer 15 higher than all passing costs (Cyigqer(i)) then the attacker will



shoot, else, it will pass the ball to the robot with the lowest Cy;qger(s) value. The
cost functions used in the implementations are as follows:

Crs = 1 taist + p2.tatign + H3.cleargoq (1
Chidder(i) = M1 -tdist + P2 tatign + p3.clearicammate(iy + Cus iy, # robotid (2
(3
Clefender = Ws-tdist + M6.talign + 7.cleare fense (4

)

)
Cauctioneer = CES(robotid) )
)
where robotid is the id of the robot, tg4;s: is the time required to move for specified
distance, tq1i9n is the time required to align for specified amount, p; are the
weights of several parameters to emphasize their relative importance in the total
cost function, cleargoq is the clearance from the robot to goal area-for object
avoidance, clearqefense is the clearance from the robot to the middle point on
the line between the middle point of own goal and the ball-for object avoidance,
and similarly clearicammate(s) is the clearance from the robot to the position of
a teammate. Each robot should know its teammates score and defense costs. In
our study each agent broadcasts its score and defense costs. Since the auctioneer

knows the positions of its teammates, it can calculate the Cyiqaer(id=robotia) value
for its teammates.

The game strategy can easily be changed by changing the cost functions
in order to define the relative importance of defensive behavior over offensive
behavior, and this yields greater flexibility in planning, which is not generally
possible.

Locomotion A new motion module similar to PWalk of UNSW [11] has been
developed for Cerberus’05. This new motion module has a fully object-oriented
structure in which each part of the robot is described as a separate object. First
of all, the robot is considered as a single object composed of many other objects.
Specifically, an AIBO robot physically consists of four legs, a head, and a tail,
each of which carries different number of joints. Each Leg has three joints, which
are the rotator, the abductor, and the knee joints. The Head has four joints,
which are pan, tilt, roll and mouth joints. Finally, the Tail has two joints, which
are pan and tilt joints. All these objects are defined as a separate class. The
classes used for the locomotion module is shown in Fig.6.

Besides its object-oriented structure, this new motion module includes differ-
ent walking styles, such as the combination of low stance and high stance, and lo-
cus based parametric kicks. It also provides smoothness in specific motions, such
as head-search, since all these motions are declared to be vision-independent.

Some special static actions, such as blocking the ball, contain ”don’t care”
fields in their joint position files. This provides independence of joints from each
other; that is, a goalie can continue tracking the ball while trying to block it.

All the necessary parameters are optimized by using evolutionary algorithms
in order to obtain smooth walking and kicking motions.



Joint

- angle: double
- minAngle: double
- maxAngle: double
Leg - primitive: char]]

Head

abd: Joint
rot: Joint

- knee: Joint
legPos: int
legSide: int fobot

- pan: Joint
- tilt: Joint
- toll: Joint

+ lookAf(int, int) : boolean

+ moveTo(double, double, double) : boolean fr Leg

fl: Leg

m Leg

f: Leg
head: Head
tail: Tail

S

Tail

- pan: Joint
- tilt: Joint

Fig. 6. Classes used in the motion module

References

. YILDIZ, O. T, L. Akarun and H. L. Akin, ”Fast nearest neighbour testing algorithm
for small feature sizes”, Electronics Letters,Vol 40, No 3, pp. 171-172, February 2004.
. Schioler, H. and Hartmann, U., ”Mapping Neural Network Derived from the Parzen
Window Estimator”, Neural Networks, 5, pp. 903-909, 1992.

. KOSE, H and H. L. Akin,”A fuzzy touch to R-MCL localization algorithm”,
Robocup 2005 Symposium. (accepted)

. KOSE, H and H. L. Akin, ”Experimental Analysis And Comparison Of Reverse-
Monte Carlo Self-Localization Method”, CLAWAR/EURON Workshop on Robots
in Entertainment, Leisure and Hobby, December 2 — 4, 2004, Vienna, Austria.

. KOSE, H and H. L. Akin, “Robots From Nowhere,” RoboCup 2004: Robot Soccer
World Cup VIII, LNCS 3276, pp.594-601, 2005.

. KAPLAN, K. B. Qelik, T. Mericli, ¢. Mericli and H. L. Akin, ”Practical Exten-
sions to Vision-Based Monte Carlo Localization Methods for Robot Soccer Domain”
Robocup 2005 Symposium. (accepted)

. KAPLAN, K. and H. L. Akin, ”A Controller Design for Soccer Robot Teams”, IJCI
Proceedings of International XII Turkish Symposium on Artificial Intelligence and
Neural Networks TAINN 2003, 1, 1, July 2003.

. KOSE, H., C. Mericli, K. Kaplan and H. L. Akin, ” All Bids for One and One Does for
All: Market-Driven Multi-Agent Collaboration in Robot Soccer Domain”, Computer
and Information Sciences-ISCIS 2003, 18th International Symposium Proceedings,
LNCS 2869, pp. 529-536, 2003.

. KOSE, H., K. Kaplan, C. Mericli and H. L. Akin, ”Genetic Algorithms Based
Market-Driven Multi-Agent Collaboration in the Robot-Soccer Domain”, FIRA
Robot World Congress 2003, October 1 - 3, 2003, Vienna, Austria.

10. KOSE, H, U. Tatlidede, C. Mericli, K. Kaplan and H. L. Akin, ”Q-Learning based

Market-Driven Multi-Agent Collaboration in Robot Soccer,” Proceedings, TAINN



2004, Turkish Symposium On Artificial Intelligence and Neural Networks, June 10-
11, 2004, Izmir, Turkey, pp.219-228.
11. UNSW 2003 team report ”http://www.cse.unsw.edu.au/ robocup/report2003.pdf”



